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I wish to show that the integral
(+) (+ D) +)
c7Pve"” - ¢ ve

converges. In particular, consider a typical term in (Al), e.g.,

£~ ) pe I\’)N (AZ)

1] G') i 7] ('+) ’H i
de © L >v\2ttt1)ep (T , T

which is the r, r' element of the term involving V
L

g 12 on the left

side of (Al).
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Because V.. 1s a short range force, the integral (A2) can

12

diverge (at infinity in r" gpace) only in directions 212”

along

which r12" remains finite. Recalling Eqs. (95) and (112), one sees
~

that the laboratory system analogues of (114) and (115) must

imply

i (+) ., . (+) “

),‘-:”*“ G ,T;E) = /gﬂm G ~)~) )
T —)oouvuf S 00lly ¢

KR
ZC (-¢) é@.';) ETEE) w
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plus [on the right side of (A3)] an integral over the continuum
~
i 3 1
functions u(rl2 12), as in Eq. (112a). 1In (A3), sinceiglz
remains finite, the magnitude of the nine~dimensional vector p”

defined by the double-primed analogue of (25d) 1s the same as the

magnitude of the six-dimensional vector plz' defined by

Ya.

A
i 3 2, M f 2
f!z ,h2=> E ,%7 i& i’sz, (A4)

in the notation of Eq. (102d); also, the two masses appearing in
C2(E - €j) [which is defined by (90b)] are the two effective masses
in (A4), namely M and Hape The neglected continuum contribution in
(A3) is of order p"“4 [compare Eqs. (112a) and (116a)], i.e., indeed
negligible compared to the retained diserete sum in (A3), for the
purposes of thls section.

The asymptotic behavior of GF<+)(£‘;£f) in (A2) as " » « is
given by Eqs. (90). Thus, employing Eqs. (40) along with (A3) [and
recognizing there can be at most a finite number of bound states
uj because V12 is short rangel, it is clear tbat the integral (A2)

converges 1f @d only if individual integrals of the form

1V E-E; BIL(
II Uj & 5-
~ zdf:zéf LT u, cfuz,)%

(=)
f2; %Q‘*’)E} AS: Q*‘lz,

) myfm szé{" Q "’”mu %m]

fliéén

(A5)

converge at large p' for each j. In (A5) the integral over r12
~F
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obviously converges. Introduce

x

oM Y2 gi/
Emi$§3f ~

00
1

(A6)
N 23 /2 "
97 = (2pae)
A 12 ﬁaz. ) 6?32
(where, of course, the tilde merely distinguishes the vectors on
the two sides of (A6) and has nothing to do with the transpose(zg)).

Then, recalling Eqs. (89) and (A4), one sees that the volume element

nE

prodptdy;

e

dR dq,

~ 12

1"

where the distinction between p" and pyp can be ignored here. In

(A5), moreover, the plane waves in.E; and qlz', as well as the factor
Aoy

_ ()%

W( ) , depend--via the double-primed analogues of Eqs. (92)--on

the five independent angles specifying 217", but not on the magnitude

of plzn' It follows that the integrand of (A5) is of order p..~3/2

o ad
at large p". Therefore (A5), and concomitantly (A2), are convergent,
Q.E.D.

A.2 Eq. (65b)

Next consider Eq. (65b), whose validity depends on the

convergence of

g‘ﬂ[VZ;VJGt G“@ o )[v (1) + Vo lL0) J ( 1)

(AS)
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Consider, e.g., the term involving V23. This term can diverge (at

infinity in r" space) only in directions v23” along which rQBV
o *2 L

L.

12 cannot propagate in

()

bound states, however, i.e., along directions v23 G12 behaves

(+)

asymptotically essentially like GF [recall the discussion concerning

remains finite. Along such directions, G

Eqs. (116)]1. Consequently (A8)---like (A2)--converges, :as asserted
following Eq. (65a).

A.3 Center of Mass Analogues of Eqs. (63)

The convergence of the center of mass analogues of Eqs. (63) now
is trivially demonstrable. Consider, e.g., the center of mass
analogue of (A2), namely

), o (+) ,
ar'6 (F )V ()6 (T2 100

Using Eqs. (40), (90) and (114), it is clear that (A9a) converges if
and only if integrals of the form (omitting inessential factors in

the integrand)

qu ~ ! W, ( f-’n.) V\z( ru. )—-1——-— (A9D)
le |2; % )’ @u S/z
A L 1
converge at large qlz”. But (A9a) does converge, because its integrand

is of order 412”~3/2.

A.4 Eq. (52a) with Two-Body Bound States

I now turn to Eq. (52a), 4n which, as in (46), it now is convenient
to suppose the incident plane wave wi(E') may correspond to a different
+
energy than the Green's function G( )(E). In particular, consider

the term in (52a) involving V.., which can be rewritten as

12




262

‘wkir! ]

r e
1[K'5+ nwd Yy A.n.'*"l

*) <
)e (A10)

[dr dydn,6 LV,

~ 12

4

As above, the integral over d512 converges, and it is necessary only

to examine the behavior of the integrand along directions 212' on

which.slz' remains finite. The behavior of G(+) still is given by
(A3), but the plane wave factors in (A10) do not behave like GF(+).
Introduce(zg) [in analogy with (A6)]
i ]
K )2k
™ ( M) ~
2 (AL1)
Ve
K' = [ \*K'
~L 2 ~ 1L
Mg
Then one can write
’ 1 . ' /
(K R + K- g ) 1€, f Ay X
~NL o2 2 2
= e (A12a)

where, recalling Eqs. (28d) and (35),
| \2 Nk Ny ! 22
(En) = K'+K”?- E'-fitkn
L 9 (AL2b)
/"n_

while ¥ is the angle between the six-dimensional vectors 012' [defined
,U

]
by (A4)] and glz,with

12 (A12¢)
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§
For the purposes of this section the awkward subscripts in £§12 can

be dropped, i.e., henceforth I shall write §12' = §;'.

When two-body bound states uijlZ) exist, therefore, the integral
(A10) will be a sum of integrals proportional to [agaln omitting
inessential factors in the integrand and ignoring the distinction

between p' and plz']

. f/_—é SR i€
dpdvidrpe weaye TR EENIDC T e
: »

1~ I

where [compare (AS)]}gf' is determined solely by the direction 312'
along which 3' becomes infinite in (A10), and is wholly unrelated to

the original XK' in wi(E'). In (Al3a) it is presumed that propagation

in u (rlz')'is energetically possible(ls); otherwise VE - €5 is

i~
positive imaginary, e

1p'VE - €, | .
° ‘i is exponentially decreasing at large

p', and (Al3a) assuredly converges. Also, as explained following
(A7), the factor W( ok in (Al13a) depends on vlz , but not on 012"

Consequently the oscillations of the integrand in (Al3a) at.large

'V -
p]2' = p' dominantly are determined by the phase factors eip £ €j
L PN |
and ei €' cosx Correspondingly, lettimg the polar axis forlziz'

lie along §' of (Al2c), at large p' the integral (Al3a) must behave
[.4

essentially like
e Pl

de'f'5 e dhm\ %e

f' /2 (A13b)
[¢]

[For further details concerning the form of the volume element
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p'Sdp'lez' in six-dimensional spherical coordinates, see section D.1].

The expression (A13b) is proportional to(BO)

: f “é‘,,' .} - .
.. 1prE Jj ) o (gor T2 1pVE-E; ¢ iglp!
de'p 7+ e (ep) = dpp e '
—_ 5/
Hence the integral (Al0) fails to converge when two~body bound states

can occur. Eq.(&ljé) indicates that the non-convergence results from

contributions to (Al0) behaving like
% /
(¢E~e:j -€") (A13d)

which, recalling (Al2b), is identical with (47).

At large £'po', the integration over dy in (A13b) is determined
primarily by the values of the integrand in the neighborhoods of
x = 0 and m, which are points of statilonary phase; in fact, writing
cosy = 1 - x2/2 immediately shows the contribution to the integral

(A13b) from the vicinity of x = 0 is o6f the order of
. L]
’Lﬁf m 4+
C /(}0’) 2 (Al3e)

where n [in this case equal to 4] is the power of sinX in the integrand
of (Al13b). At large p', therefore, to justify the step from (Al3a)

to (Al3b), it is necessary only to assume that the comparatively slowly
varying (with the angles specifying XlZ') neglected factors in (Al3a)
are finite, i.e., neither infinite nor zero, at ¥ = 0 and n. There

seems no reason to doubt the general correctness of this assumption.
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At this point I cautlon the reader that in the very frequent
subsequent instances (in this and later Appendices) wherein the
behavior of integrals like (Al3a) must be estimated, the angular

dependence of the slowly varying wave functions, etc., in the

integrand will be routinely ignored without further explanation, on the

grounds of the arguments in this and the preceding paragraph.

A.5 Eq. (52a) with Three-Body Bound States

If bound states do not exist, the dominant asymptotic behavior
of G(+) in (A10) is given by the continuum contribution émitted

from (A3). Correspondingly, (Al3a) is replaced by

' ’Lff_ H* iﬁff"w'x
Xd dv leZf ;’M ( (~\1)e (Al4a)

As above, Lq. (Al4a) behaves essentially like

’Ly“IE PJ.E "f"LE)f

Jz(ﬁ'}f") df e e (A14b)
)0'“ (ejf:)l. f’ 3/,

which converges. Thus the aforementioned divergences in (52a) do

IR

dr'r o

not appear when bound states do not occur. On the other hand,

suppose there exist three-body bound states

(s
J(M)rft) ) J(N\Z)wlb)

)|

/u’}(zn'%n_)

Then, because uj necessarily is independent of R, the integral (A1N)

n
R

now behaves like
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/ . ¢ t

dR'dg’ dr € 9w (x g Vo(r)E T T - e

LAV} Er

at large R', vhere

LYY
2M

it
m

|
o

J (A15b)

Yhereas only r.,' remained effectively finite in (Al3a), the

~12

') keeps both r

quadratically integrable u, (r ' and q,.'
a2 ol2

l’) 3 qlz
effectively finite in (AlSa). Thus only a three-dimensional vector
[namely 5'] becomes infinite in (Al5a), whereas a six-dimensional

| B ] L] 1 Y- ! !
vector [namely P1p F Pyp Xgp =P X9 ] became infinite in.

(Al3a). Therefore, performing the angular integration over the

direction of R', (Al5a) reduces to

thR"’

dR'R'e (f(“ & [dRe e gS(tﬁ-K') 4150)

The §-function in (Al5¢), like the &8-function (A13d), always vanishes
on the energy shell because Ej is negative. I add that one readily
sees these 3-body states do not affect the convergence of (A2), (AS)
or (A%a). Moreover, it is clear from this section and preceding
sections that the absence of the V12 term keeps the laboratory system
version of (115b) convergent except when three-body bound states

exist, in which event an analysis essentially identical to ILgs.

(A15a) - (Al5c) applies.
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A.6 Lq. (52b)

In Eq. (52b), terms in é(+)

corresponding to three-body bound
states are proportional to uj(£12’£23)’ and therefore obviously
cannot caugse divergence. When two-body bound states uj(ElZ) exist,

the integral involving Vlz in (52b) [here letting E' be different

from E] is a sum of integrals proportional to

12
at large q'12' Eq. (Al6a), which has employed (114b) and (115a),

is the center of mass analogue of Lq. (Al3a). The integral (Al6a)
is basically similar to (Al5a), and reduces to the non-convergent

integral

' iKQAQ43 ' \ - ———
d(}.ﬂ/.;,e’ Jo(Klzq’:z,) %%(KR%K‘L)E%(E%“ E=h Ky ) (A16b)

: A

L.

which obviously is the center of mass analogue of (47), and necessarily
vanishes on the energy shell E = E'; the interpretation of (Al6b)--
namely that the argument of the S-function vanishes when the unprimed
and primed speeds, of particle 3 relative to the center of mass of
particles 1 and 2, are equal--1s immediate, recalling the remarks
following Eq. (29), and recognizing that’§2K212j/U3R is the center

of mass frame kinetic energy when 1, 2 are bound in uj(g ). 1In the

12
absence of two-body bound states, recalling Eqs. (116), the integral

(A16b) would be replaced by [compare Eqs. (Al13c) and (Aldb)]
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() = Jd

o2

which converges.

! 3/1 (A16C)

A.7 Lq. (42)

Tor wi of Eq. (2la), the integral in Eq. (42) is GF(+)W1(+)’

whose V12 term is

jd'r G( (%) T E)V\z(x,;)’ﬂjf)(f)i) (A17)

where now there is no need to differentiate between the energies of
the Green's function and the wave function. The incident plane

wave part of Wi(+) in (Al7) yields an integral behaving essentially

like (Al4a). In other words, the incident part of Wi(+) makes (ALl7)

a convergent integral. Now the integral (Al4a) converges because
| ]
eié P cosx , though of absolute value unity, produces a factor of

-5/2

order o' in (Al4b) after integrating over dzlz'. All the scattered

(non-incident) parts of Wi(+)(£') decrease at least as rapidly as
wi(g') whenlz' + o, and apparently oscillate sufficiently that after
integrating over d31°' they also yield convergent analogues of (Alédb).

For example, replacing V¥ +) in (A17) by o ) of Eqs. (61) and

1 12
)

(72) again yields an integral behaving like (Al4a); replacing Wi
in (Al7) by @23(+) yields an integral which is even more rapidly
convergent than (Al7).

(+)

There remains for consideration the result of replacing Wi
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+
in (Al7) by @is( ), as defined in (62). If bound states uj€512>

+)

do not exist, that part of @i which is truly three-body and has

()

been termed & obviously causes no difficulty in (Al7), because

by definition [recall theintrodductién to Chapter 4]

KR KR LPVE
t6) ‘~~—c(+>_, A rf
Hom @ (1) = ¢ (T )’_=”e -—————,g-e'_ (A18a)

Tyo0||y’ ’T+WHW

Eq. (Al8a) as it stands, even before angular integration, contains

5/2 (v -5/

at infinity along v..,') needed to make

t(+)

- ~
the factor p 212

(Al7) convergent. Illowever, @i also can represent recombination
reactions (17a), i.e., can propagate in bound states. Thus, when
bound states u (rlz) exist, Eq. (Al8a) is very seriously incorrect

along directions v and st be replaced by

1?’

t(+) 1k R ;‘anqu' 1)
. A18b

S et Twane 27

~|z 12

'r—mu

This complication was ignored in the preceding paragraph because

. +
energy - momentum conservation prevents ®12( )(rlZ) from propagating

in bound states uj(£1°)'

“

Inserting (A18b) into (Al7) gives an integral behaving like

. KR 1K, %,
,‘y\)“E IZ(* )e 'u(m 1€ J (A19a)

~1L

df dg d3

Nll




270

The three-dimensional (rather than six-dimensional) plane wave
iK+n’ . ,
factor elL ~ makes it impractical to immediately introduce
spherical coordinates in the six-dimensional space spanned by
L LI 5 d
£ = Ry

in previous integrals in this Appendix. !Nowever, the integrations

") [recall Eqs. (A4) and (A6)], as has been done

over the directions of qlz' and Zj in (A19a) can be performed

immediately, yielding [still omitting inessential factors]
1
'z 1)0‘/— Kiy; 9 (A10D)
J,(KR)Q J °b
(o q/n_

ext, replace R', q12' by R', ai?' respectively, and then introduce

dr' dq’ R'%

L ad
polar coordinates in the R', 512’ plane, i.e., consistent with Egs.

(AL) and (AR),

Pacd

{ '
R = p 0P

fo "7

As in (A7) and (Al3a), the distinction betwveen pla'and p' now can

(A20)

be ignored, because in effect r.,' is being kept constant as R' and

~12
q' become large. Hence Eqs. (A20), with the aid of (All), reduce

(A19b) to a sum of two integrals, of form

T2 ip/E + K Aubq> K|. 'S\
dfjdcpf Amgp/wbgvef le oy 5P

o o pamp pPlemp (A212)

_ - Lp'VE ‘ ',, (P 2p)
- df d?’ AMPLPL (A21B)

o

In Lq. (A21a) T have made it explicit that we are interested only

in the Lehavior of the integral at large p'; anyway, at small values
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t(+
of p' the substitutions [e.c., (A18D) for o ( >] leading to (A21la)

are unjustified. Decause R', p'are each intrimsically positive In
(A19b), 0 < ¢ < 7/2 in (A21a). In (A21b), the quantity éj = 5121,

. ]
If

\,‘zij by the analogue of (A12b), therewith

is defined in terms of
making the definitions of ¢i obvious.

At large éjp' the behavior of the integral (A21b) is determined
primarily by the values. of the integrand in the neighborhood of
gin(d - ¢i> = 0, which are the points of stationary phase. Referring
to the discussion following Eq. (A13d), one sees that if (A21b) has
a point of stationary phase at 0 < ¢ < w/2, the integral over ¢ in

1/

~1/2
(A21b) is of order p' “ [recalling (Al3e) and recognizing that the

factors sing,cos¢ now are nonvanishing at the point of stationary
phase]. When (A21b) has points of stationary phase at 0 < ¢ < n/2,

therefore, the integrand--after performing the integration over ¢-—-

~-3/2

is of order p' , which converges. If the points of statiomary

phase lie at 0 or 7w/2, or entirely outside the range 0 & ¢ g /2,

the integration over ¢ in (A21b) will yield a result decreasing even

more rapidly than p'ﬁl/z. Consequently the @it<+)

contribution to
(Al17) converges.

I remark that the influence of three-body bound states need
not be considered in (A7) because energy-momentum conservation
prevents three incident particles 1, 2, 3 from combining into a
three-body uj(512,£23), although such three-body terms necessarily
appear in the Green's function G(+)(E), and therefore had to be
considered in examination of tlie convergence of, e.g., (AlD).

(+)

Yoreover, all parts of @i which conceivably can propagate in two-

body bound states already have been examined. Therefore the preceding




o
~J
5

arguments in this sectlion are sufficient to shouv Eq. (42) has no

divergences associated with bound states [of the type found in Lq.

(52a)]. To complete the demonstration that (Al7) converges, it

still is necessary to examine the contribution to (Al7) made by
s(+)

the double-scattering terms in @i , which [recall subsection 4.1.3]

-2 . -
are of order D in the limit r -+ «, In other words

. / . -/
: A(+) N KR OLA(F )
A @° (L) =€ < (A22)

’T,4>00‘i2$’ T : j;l 2

where the phasé factor AQE') cannot depend on B}. Presumably the
exact form of A ultimately though arduously could be found via the
analysis in section E.3, but for our presewtt purposes (A22) suffices.
¥
Replacing ?i(+) in (Al7) by (A22) at 1arge‘§', qlz' and finite x,,

yields the integral [compare (Al19a) ]

ot gt o PVE o B R T

Recalling (A7), one sees that the integrand in (A23) already is of
order p'ﬁl. From Eqs. (Al%) - (A21) it is evident that-—even if A

is constant~-the integration over five angles (in the six-dimensional
space of E”o&lZ')’ which reduces (A23) to an integral over dp'

1/2

alone, cannot fail to produce at least one factor of p' Hlence
(Al7) is convergent,Q.E.D. Similar--rather simpler——arguments show

the center of mass version of (42) &lso is convergent.




A.8 Eq. (43b) and Uniform Convergence

Consider Eq. (43b). Let me introduce, to simplify the notation,

) , R PNa ‘ , w
Y(",:')T)'E)" dy’ 6, (ﬁ,EjEW{(U@i(K;E) (A24a)

Y(t;?')-E-rie): dﬁ)j'fr'86i(1;)-fj-E+i5)Vi(t') @’i(t'; E+ic) (A24b)

Then, using (8%9a), one sees Eq. (43b) takestbhefSoem

® W
/g{:‘g d~ Y(t;vj E+ie) = [dv' Y (+,T5E) (a252)
o o

In Eqs. (A24), the integration over Qx' involves a finite angular
range only [section D.1]. Thus the integrals (A24) may be presumed
to converge; correspondingly, there would be no difficulty in
justifying the interchange of order of integratlion and limit ¢ + O
for the pair of integrals on the right sides of (A24), i.e., in

jus tifying

. ' . +
Jim Y(”Nr.T} Eﬂe) o (17" E) (A25b)
€ >0 / ) )

The question whether &§ not Eq. (43b) is valid [i.e., the question
whether or not (A25a) is valid] arises only because (A25a) involves

an integration over an infinite range of r'.

The assertion that the integral on the right side of (A25a)
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converges at large r' for specified ;f,E means precisely the
following. There exists a number N, depending on‘g',.E, such that--
given any n > 0 however small--one can find an Lo depending on n

for which

(A262)

L
e - [l | o

o]

whenever L > Lo(n). The walue assigned to the integral on the right
side of (A25a) is of course the number NQE,E) in (A26a), But
granted this assignment [which now provides a definition of the
previously undefined expression on the right side of (A25a)] will be
made, introduction of the symbol N(r,E) is superfluous; one may as
well aymbolize this number by the original expression on the right

side of (A25a). With this understanding, (A26a) can be rewritten as

© w LW ,
d' T (zwie) - | Y prie) [« if L >Lot)

0 0

(A26Db)

Similarly, the assertion that the integral on the left side of (A25a)

converges at large r' for specified r', E and € > 0 means

0 L

d' Vg jriErie) - |dr Vg, i Evie) < m if Lo L) (uae

[
where the subscript e in LE(n) makes explicit the dependence on ¢ 4as
well as on n) of the smallest allowed upper limit in the second
integral under the absolute value sign. Of course, in general both L0

and Le depend also on T,E, but in the subsequent discussion B will

be held fixed.
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The set of integrals on the left side of (A25a) is said to be
(21)

uniformly convergent in a domain about ¢ = 0 1f there exists
an e > 0 such that--given any n > O--for any ¢ in the open interval
0 <e g e, one can find an Lm depending on n but independent of

e for which

00 . L
v Y v vie)- (e’ Vi, riEvie) < LOLLl),
) . OLELE,

(A27)

The point € = 0 is excluded in (A27) because ¥(r;r';E + ie) may
not be well-defined when ¢ = 0, at which value of e, therefore,
a limiting relation such as (A25b) is required to prescribe Y(e = 0)
and to assign it a sensible value. Just this situation obtains,
of course, for the functions Wi(E + 4e) and Gi(E + 1e) in (A24),
where Zgs. (8a) and (26a) respectively must be introduced because
the relations (8b) and (10b) are mot prescriptive at e = 0.

Granting that the integral on the left side of (A25a) converges
i’ Vi’ llI:'L
in (A24b) the mere fact that (A25a) converges when Y(+) is defined

for every ¢ > 0, then for otherwise arbitrary functions G

by (A25b) is not sufficient to ensure that the integrals on the left
side of (A25a) are uniformly convergent In a domain about e = 0,

A simple illustration of this assertion is provided by the set of
integrals ’

g X

s

mdmf@@ﬁ.)

e]

(A283)

Q@ =
jdx 2 e
O

€3
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The integrals (A288) converge for cvery e > 0; specifically for any

such €
oo
J d:nj—(x/&‘,) = | (128b)
(®]

Moreover, since for all x > 0

j("’)(x) _ JC(IE 2 e- o

€—>o gxs (A23c)

we have also

(47
J dacjw(x_) =0 (A284)
(o]

where the integral on the left side of (A28d) surely converges. The

analogue of (A27) for the set of integrals (A2%a) is

l J dxj-(x_ ) ) < Yl it L)Lm(vl) (£22a)
OCELE,

nut the left side of (A29a) is

]
-1_=2L =
_ -€ x gL
l - e = l-e
o (A29%)
Thus, for (A29a) to be satisfied it is necessary that
-l
1 2
Ly | 8’3"3(\@“ )]
n (429¢)
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Eq. (A29¢) shows that it is not possible to find an Ln(n)’ independent
of €, for which (A29a) will helfl as ¢ becomes arbitrarily close to
zero. Correspondingly, because (A29a) fails, the interchange of

order of integration and limit e - 0

£>0 {A294d)

O O

00 oo oo
‘ ) . = (doe (+)7£.
Airm dx,f(x)e) = {da ,éu.:‘nof(xﬁ) ——JOO\ ‘5’ ()

¢

[which is the analogue of (A25a)] need not hold; indeed, (A29d) is
not true, as comparison of (A28b) and (A28d) shows.

llowever, I argue (I am not able to prove) that when Gi’ Vi’ ?i
in (A24b) are respectively the Green's function, potential, scattering
wvave function defined in this paper, then the mere knowledge that

) given by (A25b)

the right side 6f(A25a) is convergent for Y
is sufficient to ensure the criterion (A27) for uniform convergence
holds. In essence, the argument is that the convergence of the
integral on the right side of (A25a)--which for ¥, of Eq. (21a) is
identical with the integral in Eq. (42) examined in section A.7--
tends to be slower than the convergence (for e > 0) of the integrals
on the left side of (A25a). TFor ¢ > 0, Gi(R') in (A24b) is
exponentially decreasing as r' » « along any Xj; similarly the
e-dependent parts of Wi(E + ie) [e.g., the truly three-body part
@it(+)(E + 1e) whose limit as € + 0 is @it(+)] will tend to be
exponentially decreasing at large r'. Correspondingly, the integral
on the left side of (A25a) should converge for ¢ > 0 even when

Gi’ ¥, in (A24b) are replaced by their absolute values. In (A24a),

i
S (+)

on the other hand, the functions Gi and Wi are not exponentially
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decreasing at infinite r', but merely rapidly oscidlating. In fact,
glong directions y' = 312' where Vi(;j) is not small, the factor r'8
actually causes the absolute magnitude of the integrand in (A24a) to
increase as r' + ~, as section A.7 has made very clear; certainly the

right side of (A25a) would not converge if Gi(+)’ ?i(*) in (A24a)

@y @

were replaced by their absolute values. When Gi s ¥y have their
actual values, the right side of (A25a) converges only because the

aforementioned oscillations of 'gi(+)yi(*9

s when integrated over & range
of dy' in the vicinity of y' = 312', bring down enough powers of r' to
make Y(+%f'3 integrable at infinite r' despite the diverging factor
r'8.

In other words, I am claiming: (i) the convergence of (A24b) in
some small range 0 < ¢ < e can be taken for granted; and (ii)
although exceptionally cancelling oscillating mathematical functions
doubtless can be comstructed, in scattering theory one expects that
for 0 < ¢ 2 €p and sufficiently large L the (exponentially decreasing
with increasing L) contribution to the left side of (A25a) from
r' > L increases as € + 0, but does not exceed the corresponding
‘congfibution to the right side of (A25a). Or since ;g:ge L7C9ff§§P?nd3
to small n in Eqe. (A26), the asbove claim (ii) wmesms that for
sufficiently small n it should be possible to find an Lo(n) in
(A26p) which for 0 < ¢ <€ exceeds the (presumably increasing
with decreasing ¢) maximem required Le(n) in (A26¢). But this
last assertion is just another way of saying that (A27) holds.
Note that in the set of integrals in (A28a), which is not uniformly
convergent, the contribution from x > L stlll ineveases as £ # 0
for fizxed L, but that this contribution now always exceeds the

corresponding contribution (mamely, zero) to the integral (A28d).

As a result it is not pessible
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to assert that Lo(n) can provide an upper bound to Lé(n); in fact,
as €A29¢) shows, Le(n) is not bounded in 0 < ¢ < e

Although the discussion in this section thus far has referred
specifically to the integrals (A24), which correspond to the lknown-
to-converge integral in (42), it is evident that the same discussion
pertains to any integral [e.g., Eq. (65b), examined in section A.2]
involving Creen's functions, potentials and wave functions at real
energies. If this integral converges, then the set of integrals
obtained by replacing G(+)(E) by G(E + ie), etc., should be uniformly
convergent in a domain 0 < ¢ 2En because for sufficiently small
n the quantity Lo(n) [known to exist because it has been postulated
that the integral is convergent at real energies] will provide an
upper bound to the maximum required Le(n). Actually, the foregoing
discussion suggests that the domain of uniform convergence should
extend over all 0 < e. As E + iec moves sufficlently far into the
complex plane, however, Wi(E + ie), IE + ie), ete., can develop
singularities which will negate some of the assertions which have
been made. Thus 1t 1s more accurate to assume merely that, for each
E at which the right side of (A25a) converges, there will be an
€ > 0 such that the integrals on the left side of (A25a) converge
uniformly in 0 < ¢ 2 e where now the integrands in (A24) correspond
to any convergent real-energy integral [e.g., (65b)]. In any event,
the existence of such a domain 0 < ¢ e of uniform convergence
is all that 1s required for the purposes of this section.

I nov go on to show that uniforr convergence, Eq. (A27), will
guarantee (A25a), i.e., will guarantee the validity of interchange

of order of integratior and limit ¢ = 0 in (A25a) [and, therefore,
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in the original scattering theory relation to which (A25a) correspondsl],
nrovided of course that the limit (A25b) exists and the right side
of (A25a) converges. The proof 1s given here for completeness,
because it is fundamental to the approach of this paper, and because
T have found it difficult to locate a reference which is recadable,
readily accessible and wholly pertinent.

To prove (A25a) T must show that--given any U N—T can find

an El(nl) such that [now droppine the awkward and unnecessary

variables E’E]

d'r'Y‘*(),r,) _ deaY(?'),e) ‘<?' if o<E<E(n)L E

° (A30)
In (A30) one must keep in mind the definitions of the infinite
integrals therein, as explained following Lq. (A26a). Thus one
cannot immediately write

00 0
® + ()
) ] [ ' []
; d-r'Y ('Y") —'5 dT Y(T)ﬁ)z d"f [YU’)-Y(?)S)]
. (A31a)

0 0 o

liowever, one can wrilte
ad o

Jarory JarYesey = [ J e Y Gy [ ]
0 0 ° o

© L
- Jodr'Y(vgw - farYere)

(A31D)

+[ j:dpr' Y Py - JLo\v'Yw;eﬂ

&




281

In the last bracket in (A31b) it is legitimate to write

L (+> L oW
!dv'Y (Y')“de'Y(V')E>$ df’i,}/((“f‘“')“\{("ae)}

0 o 0

(A32a)

Moreover, because the limit (A25b) is postulated to exist, it

follows that--given any Ny > O--there exists an ez(nz) such’ that

+)
[ f .
l Y () - Y(T3£>\<Vlz if o<e<Eln,)<En
(A32b)
Mow chioose n in (A26b) equal to nl/6, where ny is the assigned value
on the right side of (A30). Then, for the first bracket on the right

side of (A31b),

0 )
J dv Y(+(r’) «-Jd'f’ Y(y’) h, if Ly L"@ (Mle)

0 [+ b (A33a)

Similarly, choose n in (A27) equal to nl/6. Then, for the second

bracket on the right side of (A31b),

Jdv Y(;r £)— Jdv Y(T £)1< ‘Q./ Lyl L‘ﬂ (6), (A33b)
O<E L&,

Yext let L, which was not specified in (A31b), be fixed at some

value consistent with both (A33a) and (A33b), i.e., L is fixed at

some value exceeding the larger of Lo(nl/6} and Lm(n1/6), The
important point 1s that, bLecause of the postulated uniform convergence,
Fgs. (A33a) and (A33b) can be simultaneously satisfied by appropriate

choice of an L(nl/6) independent of . Tinally, in (A32b), choose
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n, = nl/GL, where L = L(nl/6). Since L is a finite (though possibly

very large) number independent of ¢, this cholce of b is legitimate.

Then, for the third bracket in (A31b), using (A32a),
L L
(+)
/ ‘ '
j dr’Y (r) -Jdv Y(v) E.)i
0 ()

) y"‘*'[ Y ey =Y(xie)]

(A33¢c)

< der"Yuzw) - Y+ €)

(o]
L

% J dy' v, S if ocece,(nL)<e,,
o 6L 6

Hence, if ¢ < e?(nl/6L), Eqs. (A31b) and the three inequalities (A33)

imply

® Ly
Jdr'Y(v')—Jdv'Y(\‘;E)) QLI T/ <, if 04e <€) € Em
° ° 6 6 6 2

(A34)

Eq. (A34) demonstrates that the desired inequality (A30) will hold,

provided el(nl) in (A30) is chosen 5_82(n1/6L).

A.9 Alternative Criterion for Interchange
(2,16)

In previous publications it was found that the vanishing of a

surface integral at infinity--of the type (44b) or (66)--typically is the
condition for the validity (at real energies E) of identities obtained
via the operator manipulations (at complex energies E + i¢) commonly
employed in scattering theory(33). In practice one sees that use of

these operator manipulations at real energies € = 0 almost invariably

involves the implicit assumption that interchange of order of integration
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and limit ¢ - 0 is permissible. Recalling section A.8 and the discussion
following Eqs. (52), it follows that in configuration space scattering
theory the aforementioned surface integral at infinity should vanish
whenever the corresponding (volume) integral--wherein interchange of
order of integration and limit € -~ 0 is being questioned~-converges at

e = 0; otherwise the results of the present publication and previous

ﬁork(z’lé)

might be inconsistent.

It is awkward to attempt a general proof that convergence of the
volume integral at € = 0 indeed is associated with vanishing of the
surface integral examined previously. I have examined a number of
tases, however, and--when the surface integral can be evaluated at all--
invariably have found that this postulated assoclation indeed occurs.

In other words, it gratifyingly appears to be true that the present and
previous work are not inconsistent--at least insofar as the legitimacy

of interchange of order of integration and limit € - 0 1s concerned.

The following two subsections (of this present section A.9) discuss a

few simple illustrative examples of this (perhaps surprising) asseciation,
with the intent of making its existence more believable. I stress that
more complicated examples are not difficult to find, starting from

(2,16) identities involving surface

various previously demonstrated
integrals at infinity.

A.9.1 Validity of Egs. (44)

The most immediate illustration of the postulated association is
provided by comparison of Eqs. (44) and (50), where the incident wave
wi of Eq. (9) now need not be a plane wave, i.e., where the associlated
Green's function Gy of Eqs. (10) now is not necessarily identical with

the free space G According to sections 2.2 and A.8, recalling

FQ
{(+) . \
especlally the discussion of Egs. (51), @i"’(z) from (44a) is identical
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with the "true" ®1(+)(5) defined by Eqs. (8) and (lla) whenever the
integral (44a) converges. On the other hand, if as is always presumed(l7)

Wi(+> defined by Eq. (8a) satisfies the original Schrodinger equation

(D, ﬁREﬁ(lé) directly from Egs. (7), (9) and (27d), the "true"

scattered part @i(+) of Eq. (lla) satisfies

where the last term in (A35) is the surface integral defined by Eq. (44b),
but integrated here over the sphere at infinity in r'-space. Eq. (A35)
implies, as stated in the text, that Eq. (44a) holds only when Eq. (44b)
holds, and vice versa. However, the preceding remarks in this paragraph
now further lmply that for consistency Eq. (44b) must hold, i,e,9\<0
in (A35) must vanish, whenever the integral (44a)--which is also the
volume integral in (A35)--converges. Of course--as already remarked in
section 2.2 [preceding Egs. (49) ]--when the integral in (A35) does not
converge, Eq. (A35) is not really meaningful, and the manipulations
leading to (A35) cannot have been mathematically acceptable.
The preceding paragraph has explained the necessity of the associatione-

in this case between the convergence of G(+)Vi¢fi and the wvanishing of

\eQ (G(+),®i(+))mwpostulatad in the opening parvagraphs of the present
section A.9, To specifically demonstrate the association, however, i.e,,
to demonstrate the desired consistency, one would lilke to actually
evaluateyﬁ in (A35), so as to verify that it really does vanish when the
integral in (A35) converges. For the three-particle systems on which
this publication is concentrating, this desired verification ls readily

accomplished when the collision is two-body, as,e.g., in Eq. (17b). 1In
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other words, let me consider the case that particle 1 is incident on an
initially bound state of 2 and 3. Then, instead of Eqs. (33b) and (21b)

respectively,

90; - e - "‘5(&) (A36a)

V. = V"Vu - V,L* Vu (A36D)

where [although the precaution really 1s not necessary] to avoid any
possibility of evidently irrelevant divergences associated with the

(+)

usual total momentum conserving ei-E.B factors in wi and @i , I shall
consider the center of mass frame version of (A35). With Eqs. (A36)
holding, the volume integral in [the center of mass frame version of ]
(A35) surely converges, as explained in connection with Eq. (115b).
Correspondingly, with the incident wave (A36a) the surface integral
~J)(§(+),51(+)) surely vanishes because in the limit £/+ o ll any’§f~—
finite——51(+)§g) behaves like

even directions 3 keeping r,

£ ’zyaB

B

§(+)(§;£'), i.e., because, as is physically obvious anyway, the center
of mass frame two-body scattered part 51(+)€2) really is everywhere

outgoing. A formal proof of this asserted outgoing property of ? <+)gz)

i
can be given along the lines of section C.4 below; one readily sees that
with Eqs. (A36) the contribution to §(+)Vi§i of (A35) from the region

r' % r is utterly negligible compared to the contribution from the

region r' < r, implying that the order of integration and limit‘i -+ o ||,§f
legitimately can be interchanged in the present 5i<+)(§) = é<+)vi$i

of Eq. (A35).
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For three-body collisions of particles 1, 2, 3, where wi and Vi in
(A35) are given by Eqs. (2la) and (21b) respectively, the desired verification
igs more difficult to achieve. Recalling sections A.4 - A.5, we need
examine only the situation that two-body and three-body bound states do
not occur; otherwise the integral in (A35) does not converge. Unfortunately,

even when no bound states occur, the surface integralgg(G(+) i(+)) now

is not easily evaluated, because the asymptotic behavior of Qi(+) now
is so complicated, as has been discussed throughout the body of the

text. Indeed, even in the center of mass frame with bound states absesnt,

) ®) o
(16)

it is not immediately obvious that the surface integral\ﬂ(G
been meaningfully defined, although it is evident from the derivation

of (A35) that if the integral G(+)V truly conwverges, then the surface

1%1
integral (44b) must approach a limit as the radius of the spherical

surface in r-space approaches infinity.

For wi of (2la), therefore, I am not able to specifically demonstrate

(+

the necessary association between the convergence of G

(+)

Viwi and the

vanishing of~Q(G (+)) in (A35), when bound states do not occur. On

i
the other hand, I have no reason to doub& the fact that Eq. (44b) holds

in the case of present interest, namely, no bound states and wi given by
(21a). In fact, various manipulations [some of which resemble those in

subsection A.9.2 below] indicate that a whole host of improbable

inconsistencies could be proved if--still with by of (21a) ~\Q(G(+) 1(+))

ON

failed to vanish when G converges.

Y1 _
A.9.2 Uniqueness of Solution to Eq. (42)

Let wi be specified as at the beginning of the, previous subsection,
namely as a solution to Eq. (9), but not necessarily a plane wave.

Similarly, wf(E) solves

(H_f-E)k,UfE (/~I-V)(°’E)V7ff0 (A37)
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where H_ need not be identical with H

£ r Let Wf(E + 1e) be the solution

to the Lippmann-Schwinger integral equation corresponding to the incident

v.(E). Then, comparing with Eqs. (8b) and (49b)
f $

ﬂ(Eﬂé) - S//}(E)'G_y(Eﬂé)VfﬂfEHe) (A380)
implies
(H~E~Le) }E(Ene) = -ie Y(€) (A38h)

Eq. (A38b) can be rewritten in the form

(H;,"E'(:é) Q/;(Efié): -L(:' %(E) "%@(fﬂé} (A39a)

which permits the inference that ¥_ also satisfies the alternative [to

£
(A38a) ] integral equation

Plerie) = —ieC (e (Erie) () =G (E+iOV, Y (Erie) (398

Taking the limit of (A39b) as e -+ 0, we have /

B J (E+i€) = fm(E)
€0 +
- )@M EL&GJE#O%(E)} - :&:OGO.(E,%&)VL%(EH(:) (A40)

€20

Congider first the last term in (A40). Referring to sections A.4 - A.7,

one sees that--for three-particle collisions of present interest, at any

(+) +)

rate—-the integral G (E)V,¥_." " (E) always converges, whether or not the i

i f
and £ éhanneisvare*édéﬁaaea&ali.é,,swhn&&ehe@rﬁgog ﬂis= H?afuianeasenh@, the
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reason for this conveyrgence is that--by virtue of the way the quantities

Hi and V, are defin@dmmG G+ )(z } cannot propagate in bound states along

1
directi@nsfg' wherein Vigg*) can remain finite as ¢’ + = [f‘g°9 For
PRI C ) BRSS9 B
instance, 1if w (E) is identical with ¢ of (214}, Gy = GF wihich
never propagates in bound states, so that the arguments in section A.7

can bé teken over directly to show GF<+)ngf<%

f may represent. Similarly, if 1 represents the channel with 2, 3

converges, whatever channel

initially bound, as in Eqs. (A36), then
CfH)M g;(ﬂ — 0 N : } T
Cd Zdy 6, {f}ﬁ)bw(jpn Vi(g,) ¢lr) (A41)

converges by the same avguments of section A.7 besause, e.g., in the Vlz

texrm of (A4l), the only possibility of divergence is along directions

) ) ()
Y19 wherein L9 remains finite; along le ‘ ”2 (z c') hehawesilike
Gf%+)gg;g'), i.e., the v12 terw. in (A4l) behaves essentially like the

integral (Al7) previously shown to be convergent. It follows, according

to section A.8, that the last-term in (A40) always can be replaced by

() (+)
G VY

Next consider the firast term on the right side of Eq. (A40). If

lim“@i(E + ie)wf(E) as € + 0 exists, then

L [“‘(=C {tf@e) ﬁjY

€0

[*&ww “ue) i;@» Gl(éﬁng)y?(g{] =0

€50 E-30 (AL22)
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But according to sections 2.2 and A.8, if the lntegral Gi(+)(E)wf(E)
converges, then
oy
CLEree)W(E) = G (E)YE)
Oon G (Evce) YUE) = GENY, (A42b)

& >0

In the three-particle case of present interest, the right side of (A42b)
converges whenever f represents a channel which differs from i, provided
f is not merely a dissociation of 1. For instance, if wi(E) is identical

with vy of (21la), then f # i means wf(E) must be proportional to a bound

+)
1

(E), which behaves like the integral (Al7).previously

state, e.g., to u,(r 2); in this event G

3 el wf(E) behaves like

()
Cp "BV (200

Shown to be convergent. On the other hand, if wf(E) = wi(E) = wi of (Zla)‘

(+) N C
1 Ve 26 Yy

and diverges. As & second example, if wi represents the channel wherein

the integrand of G containg no rapidly decreasing factor,
2, 3 are bousnd, while wf represents the channel whevrein 1, 2 are bound,
Gi(+)(E)wf(E) obviously converges, because Gi(+)(£;£') can't propagate
finite. On the

in bound states as £ + @ along directions‘xlz keeping LI

= the (laboratory frame version of the) wave function

+)

other hand, if wf = wi

),
(A36a), then Gi wf = Gi

shown to be divergent; nor is the divergence removed by going to the

wi behaves like the integral (Al3a) previously

center of mass frame [compare sections A.4 and A.6]. Similarly, if ¥,
continues to be given by (A36a), but E > 0 so that one can choose wf(E)
to be a free three-particle wave (2la)--in other words, if the f channel

can represent a dissociation (without any recombination) of the particles

+)
1

diverges, in the laboratory or center of mass frames. That the limit

2, 3 bound in the i channel--then G wf again behaves like (Al3a) and

(A42b) cannot exist when £ = i also can be seen as follows. From Eq. (9),

(H; ~E-ite)YlE) = ~ie ¥.(E) | (A43a)
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implying, for every e > 0

(A43b)

which in turn implies

Lo [rebEnd g€ = w06 #0 430

£—>0

The preceding two paragraphs imply that--in three-particle systems
at least--if the general argument of section A.8 is correct then: (i)
when f # 1 and is not merely a dissociation of i, Gi(+)(E)¢f(E) converges
and

~ é:H(E)VC %;“(E)).

(Abda)

\.J‘Sl
\‘r\

(i) when f = 1, Gi(+)(E)wf(E) diverges and
(+) . +), _ —(+)
) = le) - 6 (.4 (© (a4

Now directly from Eqs. (9) and the real energy version of (10b) [much as

in the derivation of (A35)] one obtains(16)

—( (+) + \ -
El_/;(f' £)= =G () VW(% +¢()[é o) %(ﬁﬂ (Abbc)

Thus to be sure Eqs. (A44) are consistent, I must be able to show: (i)

when f #/1 and is not merely a dissoclation of 1,

VP [G (+J (}-f*'( )} =0; (A452)
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(41) when £ = 4
. (H, 4y tl _ I SN
Jvté'{, <f)f), g C»U} ROy (A45b)

Let me verify Eqs. (A45) in the: theee-particle circumstances considered
in the penultimate paragraph. If the f channel is one in which particles

1, 2 are bound in uj(£12)’ then [as explained in subsection A.9.1]

§§C+W - E;(H _ %;

5

surely is everywhere outgoing in the center of mass frame. Now suppose

wi is given by (2la). 1In this event the left side of (A45a) becomes
T — \ () - (+)
(5'.“) (f’] :/P[~ - ]
i[wg{{f =6, 4,
- o ); (+) -fm] {(A46a)
vﬁlé‘/; J %] ¥ l é7; ) -%;

Again as explained in subsection A.9.1, the last term in (A46a) assuredly

vanishes, in the eentérwofsmass £rame:at any-rate. - Mozeovkry because GF(+)

cannot propagate in bound states, it can be seen that the surface integral

i [(’F“\/ %] =0 (A46b)

Therefore (A45a) indeed holds when 1 denotes the channel in which all three

particles are unbound and freely propagating. Similarly, because G23(+>
cannot propagate in bound states other than uj(gzs), one sees that (A45a)

also holds when, e.g., wi is given by Egs. (A36) and wf is as chosén in=the

%

second sentence of this paragraph. As for Eq. (A45b), it is difficult to
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verify directly when wi is given by (2la) [once more for reasons
discussed in subsection A.9.1] although there is no reason to doubt its

validity. n ¢, is given n by (A36), however,; Eq. (A45b) reduces to

e -

(Abbe)

(+),¢i(+>] now surely vanishes since

now surely is 6utgoing--in the center of mass frame at any rate.

because [see subsection A.9.1] Q@[Gi
+

¢i
With *1 of (A36), Eq. (A46c) can be confirmed by direct calculation, most
easily (though not necessarily) in the center of mass frame. Of course,
when the collision is two-body, as with the incident wave (A36a), the
validity of the real energy Lippmann-Schwinger equation (42) hardly can
be challenged, in which event (A45b) can be inferred from Eqs. (42) and
(Ab44c) without any reference to Eqs. (A40) and (A43c).

The above paragraph has achieved our original purpose in this subsection,
namely to illustrate the postulated association between the convergence
of a (volume) integral at real E and the vanishing of a related surface
integral at infinity. However, it also has been shown that when

circumstances are such that both Eqs. (A44a) and (A44b) can hold for

specified y,, Eq. (A44b) [i.e., Eq. (42)] does not have a unique solution,

since if Wf(+) and Wi(+) gatisfy Eqs. (A44a) and (A44b) respectively,
r ¥ +¥ (A47)
¢ 4

also satisfies Eq. (A44b). In particular, therefore [as asserted in
section 2.2], Eq. (42) does not have a unique solution when wi(E) is
given by (2la) and when at least one rearrangement channel of 1 exists,
i.e., when bound states uj(rlz), uj(rZB) or uj(g

reached via recombination reactions like (17a).
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I conclude this subsection with the remark that the customary

operator manipulations wield
! -\
GAEvie Y (B) = ——— H(E)
‘ J H;‘“E“‘{*é
|

-—“'-—’”’”‘r'_ff “i(E) (A48)
T Hpl-VmErC
' AL
V§ - V; -L€
which seems to imply: (i) whenever f # i, so that Vf # Vi’ the first

k

term on the right side of (A40) vanishes, i.e., Eq. (A42a) holds; (ii)
whenever £ = 1, Eq. (A43c) holds, I do not question the conclusion (ii)
immediately above, namely that when f = i, Eq. (A43c) quite gemerally
holds. As explained earlier in thils subsection, however, the codciusion
(i) immediately above is questionable when f is merely a dissociation of
i, and as a matter of fact one can show that in this circumstance the
first term on the right side of (A40) need not vanish. More specifically,
choosewpi as in Eq. (A36a), and let the f channel represent free
propagation under no forces. Suppose also that E > 0 [otherwise wf(E)
isn't even defined, and Eq. (A48) as well as (A42a) are essentially
meaningless ], and suppose V12 = V31 = 0, i.e., suppose the total
Hamiltonian H 1is identical with H
vV, = 0; Gi = G23; and ¥ )

i f 23
analogues of Eqs. (58a) and (72) [recall the present defining equation

23 of Eq. (56b). Then in (A40):

is identical with ¥, ™) defined by the 2, 3

(A38a) for Wf]- Therefore, in the circumstancessjust:described;.Eq. (A40)
implies
O [-Le GJE@&);@(E}}
€20
: ’ —ar—’(*)
= A [, Enedyte)] = 9, (849)

E-50
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In other words, in the present circumstances the first term on the right
gide of (A40) does not wvanish. This result (A48) demonstrates the possible
dangers of uncritical reliance on operator manipulations such as employed
in (A48).

A.10 Alternative Derivation of Eg. (205b)

The derivation of Eq. (175b), and the discussion in section 5.1,

make it clear that the function B, defined by Eq. (201b) is given by

> 12
- o A
F = Mo S&g e “""c?m(r‘)
R0 7 ; .
. Uhkr, A CAr
Y S S VN L SRR 1) o2 16 o
AV -

where for simplicity I have dropped the here unnecessary subscripts 1, 2

and 1. Let
| : oy (+)
(+) - ) N b v
MC (i;%;iﬁel LL) — L{(; {5> - - ()[) (f:)

(451)

be the continuum solution to the Schrodinger equation in the center of
mass frame of particles 1 and 2, containing the scattered wave ¢(+) of

{(A50) when the interaction is ¥V = Vﬁg) and the incident wave is

12 %12
given by (74a). Suppose the short range potential V<E) can be considered
negligible for ¥ > &, i.e., suppose in effect Vgg) = § for r > a. Let

me further assume that V(r) is spherically symmetric; this assumption does
not significantly detract from the objective of this é@cti@na which 18 to
confirm the validity of (204b) via an argument not employing interchange
of order of integration and limit e + 0, as in Egs. (203).

{400
With the sbove assumptlions we kn@w"gy that
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U(H’)(r“) = iCQL j(ﬂé"")mwg n (kr) ] /f,{ k/\ r >

< . ) S (A52)

where Pz(5’5) is the Legendre polynomial in the angle between ¢ andykri'BIZi
(34)

of (201b); the jz and n, are the usual spherical Bessel functions H
and the numerical coefficlents CQ are given in terms of the phase shifts
62 by
A Ly
= (2h+1)e |
sz ( ) (A53)
In (A50),

* . A ) R «(,Y\
_,f 8 | dre e (854)

The second integral in (A54) is evaluated as follews. Using the
expansion of eibgg in spherical harmonics(éo) [which is quoted in Eq. (E31)

below], Eqs. (A51) = (A52) can be rewritten in the form

@) = u o) e 2 () (hr)

{(Ab5a)

where
F(o) = C ) LL{Q(%)”/)}&(&W)] 7o
i\ ; _

(A55b)
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Substituting (A55a) into (AS54), and again employing the expansion (E31)

[which is written out explicitly for e ;étg“in Eq. (E45) below] yields
)

K
_,urA {(+)
fd(\e *(r
'(2, v

= 2 ) Pk, A) aw ), (Ar) (136)

O-

Next use the formula(al)

Xdr r%(ﬂ )4, (ke)

Ar)af (}ar) Aj Ar)l ")] (A57a)

e,

A'

where fg(kr) is any linear combination of jz(kr) and nz(kr) with

coefficlents independent of £ or kr, and where it is understood that

4,00) = -1,(r)

n,,((’) =t 70(()) (A57b)

Then in (A56)
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_ Qﬂ (}2) s V\{z (A58b)

PR

where QJL(R) denotes the R-dependent terms enclosed within the braces in

(A58a), and Wz (independent of R) denotes the remaining terms in (A58a).

The terms in (A50) involving the matrix elements of L are trivially

integrable. Thus, employing (A54), (A56) and (AS58), the formula (A50)
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becomes
A u)
F:‘Q‘;\M {gdre " W<P
Rom 7
+ L/ﬂg‘('t)ﬁli({z)w[%(/?) + Wa]
(h-AR
+.ﬁ<kyrt/lk>( 1)
(k- 7)
VR ) ‘ (A59)
kA )
<JUH:)£ > (e JZ
Ta ”"WT/

In (A59) it can be seen that

lim 4T 5 ()P (5, ) G(R)

o R C(h-m)R
r u(j +A) L -
- (:UZH)e wg[ ) /_.,,,..,—— - EN__.._,-J /)ﬂ (f{,{j)
lAk A+ A -k

(A60)

plus terms of order 1/R, negligible as R + =, Moreover, from Eqs. (A55),
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kv
la @ "r) = é(ume i Pk ) €
) ke
rqm/{% ‘ (A6la)
while from Eq. (131g)
Ly
(+) SR N ﬁzy[t}ﬂw
fuiw ¢"(0) = £
(A61b)
r—>w [l Y
Hence
_ ATk i(;zfzu)e@w'b_ Plk,A)
Chylelhr = == 2 A
(A628a)
LOp () -A)
e amh 5 (e fidy P, (e, =2
< &V’EI%> ‘;E 7
S ,
gV 2 ) g f(a)ﬁ)
- - Eﬁ“_%( Y adee a1 o
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Eqs. (A60) and (A62) imply that the sum of the R-dependent terms in
(A59) approaches zero in the limit R + =, i.e., that the limit in (A59)

really does exist. In this fashion we hayeragduced (459) [i:e,, (450) Jcao

_ jd‘f Q_Lf°A§D(+)(I> Loy g('L)JZWg Fg(!?;é)

¢l lelk> <-)z/A{fl{%>

tﬁhA JE‘_ A jz+»A

- A

JEA g

(463)

Now we can return at last to Eq. (205b). Evidently the result (A63) will

be identical with (205b) if we can show

szelw\ fﬁ‘”[\ + 4T ﬁ ) W, 1, U’ A)

_du (AR (464)
ntoA R

From the fundamental definitions of the quantities involved [recall

Eqs. (13le) - (131i)]
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® LA + > | -LA‘Y“ b !
fdvr:e * L) ug )(f) :Jd,ﬁ‘lﬁe ! Nj?(f}f)@“ - (462)
0 o]
= 4,A/f/!’>

But we are assuming V(r) is negligible for r > a. Also,
»A

(\71+ ,,%v.*_ ’Q,/,‘_‘L/)ucw - 0

4]
. _LA
v 1 (ST A -—
(\7 —f'A) e — 0 (A66a)
so that o ’A"‘ W)
el ()
BT h
, o~ , AT
A AT e W g (A66D)
:(L-A‘))(“ S *J{‘*ﬁ [ "7 Ve
J
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Therefore, comparing Eqs. (A64) - (A66), we see that demonstrating

6.

C o4 \f
<AL~,}%)) JL‘B“L[\:{}CPM(P) + 4T (/q ,"ﬁz)g(—b) Wi /32(\}?)“/:‘\)

w

Cr

(467)

()

is equivalent to demonstrating (A64). Eliminating u, in favor of

¢(+) via (A51), Eq. (A67) becomes

4T (RK) 20 W, Rk, A)
Jdr‘[ )

. Y[ E dg (Ar h
= 4T (‘-C)Q&(k)@g ‘ M 'M 4. Ar) 4 ] (A68)
£ - AY\ d(\ =z Q

where the value of the right side of (A68) vanishes at the lower limit r = 0
because we know Fk(r) defined by (A55a) is well-behaved at r = 0.
At v = g, Fz(r) and dFQ/dr are continuous; hence these quantities can

be calculated from (A55b). Thus (A68) reduces to demonstrating
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-t [}eﬁm“) //y_-/ug&) - A7£~I (AL\>7‘UM)}
4 [k 1 (Aa) 1, (ka) = A%’M (Aa)ﬂﬁ(éa)]

o g
N [A}zl(/\a)ﬁg(jm) - pz/z (A&M’Z‘(}M)]

However, the relation(34)

At @ - ¢ )

can be put in the form

(1 (0) =0y () — (L) l0)

Similarly

o N
(7/2;([)) = {n, 0D (L +0) N0

(A69)

(A70a)

(A70Db)
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Moreover, it can be verified that Eqs. (A70) hold for £ = 0 with the

interpretations{ (A57b). Foom’ (A70a) .we infer

pza4ﬁ(fl)4ﬁl(fz> ““€4¢;<(,)7£(VL>
- eufﬁ ((‘M,e—/(&) - €F«4z(()l-) 7@«/“‘)

(A71)

Letting Py = kg, Py = Aa, we see that (A71) ensures the equality of the
terms proportional to i on the left and right sides of (A69). One
similarly shows the remaining terms on the left and right sides of (A69)
are equal. Therefore, we have demonstrated (A67) and (A64) hold, i.e.,
without interchanging order of integration and limit £ + 0 we have

demonstrated that Eq. (A50) reduces to Eq. (205b), Q.E.D.
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APPENDIX B. CONVERGENCE OF ITERATED EXPRESSIONS

Page
B.1 Eq. (69),....... e e e eeannes cesene 305
B'2 Eq' (133b)'vv|u§;"t(3“‘09‘|u9.(7'!COQD'QV‘%B‘QTV!'«Q'-'QO«'OD"Q 313
B.1 Eq. (69)
A typical term in (69) is
A = ) ' d ; AW, LFEW
= v G (F, 7)Y (P (T
G V&5@|2 di’23 X ~)¢y) 23(.«2-3) ‘2( ) (Bl)

Ad discussed in section A.l, the integral (B1l) can diverge (at

infinity in E::' space) only in directions £23' along which r,,'

23
remains finite. Moreover, divergence can occur at infinite q23'
[
= (+
only, so that terms in G( ) corresponding to three-body bound

states (wherein both §23i and ‘523' remain finite) obviously cannot
-

cause (Bl) to diverge.

= () = .
1 ¥ §
The asymptotic behavior of ¢, (}3) at large 9y5' 1is found

from (72) and (73), using

= - m
T Jp™ 27

~ 23
- Mgt M | @)
% 'a = mﬁ /M' C‘/ = ’erl M ‘!:15
N , 13
m,+m, = (2 -, )(m,+my )
Thus remembering r23' remains finite, ' ’
~ . Y . _ +
_ LT éll%&,g tku!%za "‘%“’Zai ,
fm  F(3E) x€ M v (X )
éaz(}s)‘E) = & Q\N‘Z/
] =/ >
%2?00“223 g q' -~ _Tna 5 .'2% 2
| ~2> ey (83)
> K _qv‘ ihll%gg _ 1 Ma k‘ g}?l g




(a2
[en]
Lo

In (B3), factors depending on 523' only have been dropped, because
for the purposes of this section they play no role in (Bl). The
factor a(;lzlrlz') in (B3) of dourse is proportional to the emplitude
for elastic scattering in the two-body collision of particles 1 and
2, |
Now, omitting factors irrelevant to the question-of its convergence,
if bound states uj(r23) exist the integral (Bl) behaves like [compare

section A.6, and recall the discussion at the end of section A.4]

_a_m K -q ' kP
)e mam e 1 23 _;3’5‘5 |z~13~za

CLZB CVza {B4a)

Similarly, if bound states do not exist, the integral (Bl) behaves

like
' iPVE -i%m Kot R ‘,;,z—;aﬁ'kn«u ~23
dg d+. € V. ()€ e (B4b)
$z3 ~ 3—--,_52. 23\~23 '
f Y

After integrating over 4323', the integrand in (B4b) will be of

=3/2

order q,, even before integrating over d§23'; thus (B4b) is

obviously convergent. The integral (B4a) reduces to

e ;L(Kzs\;*ksz,)%';a. -
d%”e } (m+mz ‘2%3) (B5a)
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which converges unless

K +k - m K. =0 (350)

23] 12 2
J /M +m,
Now, from Eq. (294d)
- K + M, K (B6a)
NI N2 — ~|
mam, '
implying the triangular inequalities
Ro-m Kol ¢ Ky & R +om K, Gen)
m+m, m+m,

The quantity K23j is defined by the analogue of (114b), so that, as

in the analogous case of Eq. (Al€b)
K K . (B7a)
23 4 23J
It follows that

| &y, K | < K,

m +wm, ‘12 3 (B7b)
permitting the inference that (B5b) cannot hold on the energy shell.

In the foregoing, various slowly varying (independent of §23')
angular dépendent (on'223') factors have been omitted from Eqs.
(B4), in accordance with the discussion at the end of section A.4.
Comparison with sections A.4 and A.7, plus a little thought, shows
that inclusion of those factors could not have worsened the convergence

of the integrals (B4a) and (B4b). For instance, the 4 L dependence

23
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of the 3, factor in (B5a) is understandable on the basis of the
principle of stationary phase, recalling (Al3e) and recognizing
that [in spherical coordinates with polar axis along 512] é§£3

in (B4) is proportional to sin §£3e If, for example, the omitted
3(253) factor from (B3) atso 18 proportional to sin 3§3 with this
chdice of polar axis, the integrand in (B5a) actually will be of
order q'_3/2, and will converge independently of the criterion (B5b).
I conclude that the integral (Bl) surely converges on the energy
shell, i.e., the right side of (69) surely converges on the energy
shell, Q.E.D.

Recalling section A.4, it 1s not difficult to see that the
laboratory system term corresponding to (Bl)--namely the term
G(+)V23¢12(+) in (67c)--has essentially the same behavior as Egs.
(B4), i.e., is convergent on the energy shell whether or not G(+)
can propagate in bound states uj(£23)° On the other hand, when
bound states uj(£12,523) exist, the integral G(+)v23¢12(+)
[recall Eqs. (A1l0) and (Al5a)] behaves like the integral (Al5c),

obviously

i.e., contains a §-function vanishing on the energy shell.
If, as in section A.4, the energy assoclated with wi in (60)
is permitted to be E' # E, the limit on the right side of (60)

yields [instead of (72)]

@ o i G (E+ie) VA (E _’Q"”?‘ngeig‘;‘,%m @y
2 (E5€°) = “Eo0 'Z(EME llqm(ﬁ )= P2 CGpEpiR,) (@82

where
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+) SN - " ; AT (B8H)
2<2u)§tz>i\§sz> ~5’%’ <?’y~szﬁ Q}%ZQEQ)@

and

o

,2 .2
E_-=E S
2M Ze/ugﬁ, (B8c)

Because V., is shovt range, the integral (B8b) obviously remains

convergent for all EIZ'” &12'9 Hence the &8-function singularities

of

BEE) = -8 EIVA(E)

(B9%a)

found in section A.6 are absent from a correctly performed continuation-—-

(+) = (+)
B in ¢i .

course, if 512(+)(E;E') were to be computed from the incorrect [because

to energies E' # E-—-of the two-body scattering terms o Of

it is non-convergent)] analogue of (B9a), namely from

§ (E;E) = - CEY v.(E")

" v (B9b)

rather than from (B8a), the §-function singularities of section A.6 would

reappear, since §(+)Q§;§') behaves like 512(+)Q§%§') as E? + = along

. i §
directions‘312 which keep rlz finite.




W
o
<

A corresponding continuation of (69) might be to define

T8 o~y A= ), F®
CE;L (ﬁ;E )=-6 (E)[(Vzg\’s;)@u(ﬁ) "*"(\{3.4'\"’41)?23(5) (B10)
+ (Vi + vzg)if" (E")

In this event, the preceding analysis in this section is essentially
unaltered, except that the criterion for divergence of, e.g., the

E(+)(E)v (+)(§') term in (B10) corresponding to (B1l) becomes

23%12

{

b<  F /kil - _m K =0 (B11)
233 12 —_— N
/YV\‘+ m,
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Eq. (B11) can hold, as the following argument shows. Yote first

& Com ! P i s sitive. Th 211)
that K93y 112 and le all are intrinsically positive hus (B11l

is a segment of a straight line in the K ' plane, starting

k
]7 12

at qu' = N, Eq. (311) can be satisfied vhen this straight line

e

intersects the ellipse [recall Eq. (35)]

2 _

2,,'2 2 ‘
2/4\3;2_ 2/A V2.
Now, starting from small values of L', one can see that the ellipses

(r1?) first intersect (B1ll) at qu' =0, i.e., at

E=#K, -# (m+mz)K J_ﬁ;.__,(m_t"_@k =MD o
2}*3& 2/“32, m?* Y2 m,m? 3 maM,

where [recall Tq. (114b)]

— 2.1 ;2 J—
E = h 23 = E-‘EJ- (B13b)

denotes the kinetic energy in the center of mass system when the
total center of mass system energy 1s I, and when particles 2, 3
are propagating (relative to 1) in a bound state uj(;23) of energy
ej. At larger values of L' than given by (813a), the ellipse
(312) always intersects (Bll). Ilence (B1) [with E' 4 E] ean be

divergent at real energles

ey

/
E > (m+my) (my+my) E > E&em S E (314a)
MM,
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when bound states u (£93) exist. The divergence is at worst

]

logarithmic, however; certainly there are no signs of the S-functions
assoclated with uj(r23) obtained in section A.6. Morecover, the

2, 3 analogue of Eq. (Al6L) implies that--as E' increases from

small values——-8-functions associated with uj(£23) occur at energies
E' >y E
E 2/ kl/\\ (B14b)

a result not the same as (Blé4a),

Replacing 5a (+)(E) in (B10) by 5u (+)(E;E§ from (B8a) [where

B B
now, in the center of mass system,‘é' still equals the originalgs
in wi(E)] perhaps yields a continuation of (69) more analogous to
the continuation (B9a) of section A.6 than the continuation (B10)
just examined. With this alternative form for Eis(+)(ﬁgﬁ'), one
sees that the criterion for divergence of, e.g., the integral
3 Gy 3. ) EEy ger
G (E)V23Q12{ (ESE'") isi-
{

- /m, K =0 (R152)

mAm,

instead of (#11), where klz“ is defined in terms of L by
2, — 2 12
/h h\l = E - -h 12

P T

A little algebra shows that (B15a) cannot be satisfied for real

K,. + &k

3\, 2
(B15b)

kl’, kz', k3', though it can hold for complexlﬁ, For real}é's

therefore, replacing 5& (+)(E) in (B10) by @ (+)(E;ﬁ‘) vields a

s (+)

B aB

continuation of ©i which~-1ike the original formula (69)--is




always convergent.
The foregoing considerations justify the remarks made following
Eq. (75).

B.2 Eq. (133b)

A typical term in the integral on the right side of (133b) is

T ) L | AT .
’B-Zf \/2‘3@ " d%zg Nzg@ (?)v (, z;_.;)e ?‘)U(ka ) (B16)

using Eq. (72) and dropping the irrelevant prime on r'. The
convergence of (B16) depends only on the asymptotic behavior of the

integrand at large Qyq- Consdder now the contribution to (B16) from

(-)% (-)#
23¢ ?

argument leading from (B1l) [which (B16) very much resembles] to (B4b), one sees

the part of W denoted by Y Eq. (136). Recalling the

lusing the 2, 3 analogues of (33b) and (105b)] thet at large 494 the

¥ (-)%

23§ contribution to (Bl6) is proportional to

%@. %’2% lk@i%l&
Yz

WK, .0 1
e ~1353§';3>Q W+m (B17a)

dg,,

A
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which contains a term proportional to the §-function (135a). I add that
the validity of this result--and therefore, in effect,: of the procedures
which T have been employing, especially the procedure (explained in
sectlon A.4) of neglecting the angular dependence of slowly varying
factors in integrands--is borne out by explicit calculation in the later
section E.4,

The contribution to (B1l6) from propagation in bound states uj(gz3),

the only bound states that possibly can cause (B16) to diverge,

behaves like

__‘i, i ;Kl .°q, .
iy 72 LR Yo

1K,2.9, ™
[ & V00 €

(818a)

L4

} , CLZ% qblg

1 KZB' C} ik\l\q/l,?: .
) Jd%ZBQ Se ? ( 7, KiZi%Lz\) (B18k)

" m

The integral (B18b) is identical with (B5a). Therefore the formula
(133h) is convergent on the energy shell, and &ontains at worst

logarithmic singularities, as discussed in section B.1l.

Evidently the result (B17b) can be associated with the fact that
3 (+)

(+)
12

at large dyq» then (B17b) would be replaced by

p L?z& F
fofch R (B19)

where F(ki,kf) will depend on the particular asymptotic behavior [#.e.,

on the phase at large q23] of the quantity which replaced 512(+). The

in (B16) decreases asymptotically as qz:;1 at large dpqe If
-2

were to be replaced by a quantity decreasing as p

]

n
923

integral (B19) is logarithmically divergent when F = 0. Comparing (133b)




315

and (165b), it can be seen that (B1l9) is the form te which the large
= (=) s(+)

954 contribution from the Wf V23®12

- ke o~ - e .
remembering that @128(')(r) behaves like p 2 at large p [as discussed

term in (165b) will reduce,

in subsection 4.3.1]. However, as section E.3 below shows, the phase

of 5123(+)(r) at large g1 will be a very complicatéd function of 51

and the direction;323 along which r e keeping.zzg finite. Thus it is
very difficult (and for the purposes of section 4.3 not worth while) to
determine the form of T in the case of present interest, i.e., it is very

difficult to write down the relations betweendgi,k determining the

~f
values °f,§f (for given Ei) along which the various integrals in (165b)

can be logarithmically divergent. Fortunately, logarithmic divergences

- (<)% o
of this sort in scattering amplitudes, e.g., in the Wf( ) V23¢12(+)

of (165b), apparently do not make measurable contributions to the

term

scattered current. In fact, referring to sketion E.2, 4¢ seems that a

- (<)% -
contribution to Wf( ) V23@12(+) of form (B19) is associated with the result
that, in the integral §(+)V23512(+) leading to the amplitude
- (=)% - - - -
Wf( ) V23@12(+), the r' > r contribution is of order r 212 along special
-5/2

directions. But an r contribution for r' > r--though sufficient to

generate the transition amplitude divergence indicating interchange of

order of integration and limit ¥ -+ « is not wholly justified for the

§(+)V23512(+)m~is not sufficient to produce divergences in the

integrand for the center of mass frame probabllity current flow [recall

integral

Eqs. (118)]. Therefore, because these special directions‘g along which

(+ )

f

stalz form at most a four-dimensional manifeold

in the five-dimensional manifold of physically allowed gf [recall subsection

(165a) fails for G

£.3.3], the contributions along gf to the probability current flow are

inconsequential.
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APPENDIX C. ASYMPTOTIC BEHAVIOR OF UNITERATED INTEGRALS

Page
C.1 Eq. (99)ccvcccnes e 316
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C.5 Bound State Effects in Transition Amplitudes -:--:- eeeessenoas 329

C.1 Eq. (99)

I wish to determine the contribution to the left side of (99)
from the region r'" > r, in the limit that r >~ ». In particular, I wish
to show that when bound states exist this contribution decreases no more
rapidly than th at large r. 1I:mote that fér the present purpose, namely to
examine the validity of using (99) to deduce Eqs. (100), it is

safficient to suppose r + « along directions X‘such,that no r
(27)

af

remains finite ; it 1s clear from section 3.2 that Eq. (97a)

[which led to (99)] generally is not a useful starting point for
evaluation of 1im G(r;r') as r » = along directions v _, in which
o’ 2 ~0.B

T remains finite.

~0.8

Consider, e.g., the V., term in (99), assuming particles 1, 2

12
can propagate in bound states. Then, recalling Eq. (A5), at large

n 1"

wherein r

r" > r, along directions v remains finite, the term

12 12
in question behaves like Con
ipVE - I(K_‘. R+K n.f ‘%, fYEE

Vi(x,)€

-19"4 "5Z;
K" R == )%

- = (Cla)
X (MZ,)Q ’@‘j’w TSE)

JdE"o! g dr"e
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In Eq. (Cla), as in Eq. (A5), the defining relation (%0c¢) makes

"

ky.''" =0 wvhen r remains finite as r' » «. Correspondingly,

12 12

u. n. _ 2M E R"
%j— E +}Sl2f%|2 /hz[-"r ft F,, (C1k)
= \[E ,f!";..'gll =, E f)‘;’, YI)’.“,ﬁl

f f

R 4205l Jo %
" 2
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using Eq. (A4). As in section A.1, the distinction between the

¥ i

remains finite

magnitudes of P19 and p" can be neglected when P

while p" » », Thus, now recalling (A7), Eq. (Cla) can be replaced

by

. L4
. o5 1ff" 1.\/—”211‘2 iPVE-g K R W
r v, f-E e € (F5E) (@
7 o 12jf
where ¥ (-)* depends on v but not on the magnitude of p " p'"v..".
124f P Nip' & 212 X12

The magnitude of E' also remains finite in (C2), so that (for the
purpose of estimating the behavior at large r) the integration over
dxlz" can be replaced by ‘plz-zjz(plz/ﬁ) as in Eqs. (Al13) and the
discussion subsequent thereto. Note that in (C2) the magnitude of
the siz~dfmensional vector'f12 defined by Eq. (A4) cannot be equated
to the magnitude of the nine-dimensional V¢Ct°r13 at large r,
because rlz/r does not approach zero as r + « I] y. For given vy,
however, the ratio r/p12 remains constant and finite as r + « ]I Vs
excepting those very speclal v (surely ignorable for present purposes)
whereinql2 and R remain finite--i.e., wherein iy alone becomes
infinite--as r > =,

Af large r, therefore, the contribution--to the V12 term on

the left side of (99)--from values of r'" large compared to r is

estimated by

o0 : "
dfne f’“‘: J. (f’»fm) (c3)

, " 3/2
Yf f ﬁz
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where vy is gome number > 1, sufficiently larce tr ensure that the
factors preceding V]9(£19”) in the intcerand of (Cla) represent

+
( >(r;r") in the range p

CP > p to v'thin, e.g., one perecent. The
reason for this cholce of lover 1imit is to be understood as follows.
Strictly speaking, we want to compare the contributlon from the
region r' > r vith the contribution frow r" < 1, in which event the
integration in (C3) should run from p to ». Ilowever the aforementioned
asymptotic representation of GF(+)(£}£y is only valid for r”
sufficiently large compared to r. OCn the other hand, if (292)

really is valid, then the contribution to the left side of (27) from
every region r" > yr, vy > 1 (i.c., from cvery region p" > ¥YP, Y > 1)
must be negligible compared to the contribution from r" < r. Thus,
in (€2), I am estimating the contribution to the left side of (29
from that region p" > yp > p wherein one can be confident tuat (CI)

reasonably accurately estimates that contribution.

Letting p" = px, (C3) bLecomes

©  ipx(VE + VE-g,
__Jz—(-ftzﬁ_)_ dx efX(E+ ")

2 LU
pep

X 3/2 (C4)

But the integral in (C4) is of order ffl by the Piemann-Lébesgue

3 -1/2 . . .
lemma< l); also, J,(p12¢t) NP / . Hence [recalling tuec remarks

at the end of the next to the last paragraph] the entire expression

(C4) -—-and, consequently, the expression (Cla)--is of order

SEJ20 32 4
Pqn / o) / = r , when bound states u,{(r.,,) exist.
dad J ~12
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In tue obsence of bound states uj(£i°>’ or equivalently when
Y

r'" » « along directions v wherein every roC” » o, (Cla) would be
o d A

replaced by [neglecting inessential factors]

ipVE -1(K R+K" R 1pE %3y
] " ~ [ ¥% " A - - - / )
dRolC‘, dhll'g;?z" e Yl(r."" )-877’:1- = ﬁz f 21 2 (CEg)

Lecause the only essential difference between (C5a) and (Cla) is

n3/2

lie extra factor p in the denominator of (C5a). Thus use of (99)
should be legitimate in the absence of bound states. On the other
hand, when r" - © along those very special directions 317” wherein

propagation in three-body bound states is possible, (Cla) would be

replaced by [recall Eqs. (Al5)]

1R’ d i} d Q. r'fe_mK ‘R ( 1.K‘R
v 1.)E /LL L I
J o, f”# =1 R" ( : Ch) (C5b)

"

5 s
In (C5b), both 212

o
(90c) imply Kf” = (ZME/ﬁz)l/“ at large " T, Thus, making use

of (A6), the r'" > r contribution to (C5b) is estimated by

and r12” remain finite, so that Egs. (25d) and
lad

(C5¢)
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“

. . . - . . -
comparing with Igs. (C3) - (C4) and recognizing JO(R»E) is v p
as v > I] fixed Ve

€.2 Tq. (101)

Mext consider Eq. (101). he right side of (101) is of order
-5/2

r at laree r. llowever, much as in Eq. (Cla), when u (r )
[&) y ¢ ~

s

occur the contribution-—from ' > r——to the V term on the left
12

gide of (101) behaves like

LpYE o VK9 -
dcl,” d'r e v e MZ-fq"sz,V(Nu) 3] (2" r@i”’l (oo

py) \2 F” 5'/2 Ci/fl J “IL 2 ‘f

iz

where p'" is defined by the analogue of (102d), and approaches

pe)
infinity along 212” keeping rl7" finite. The fact that rlz" remains
finite as p" = ® now implies that the magnitudes of the six-dimensional

o" and the three-dimensional qlz" are rélated by the analoguec of
o

Fid
(116b). Also, we now have, in analogy with (Clb),

1

. _ o~ " ;-)”. Qy Z b “
%ﬂf (}lz a?/nzn" /e c‘/'lf;—_———*";'z Yo & % ))»}n.

”"2 (C6b)

A -" mu ~s
32. i\z
using (A6). Ilience, recalling (114b), the integral (C6a) can be

replaced by

- — 1FV/” 1\/—‘“:\;@:2 '&? "
! e
df f Cjﬂiz ~45/2 g“‘“c’! (c7)
f f




()
[yt
N

Tn (C7), apain because r.,/r does not approach zero as r 7 © {l‘g,

12

Eq. (116h) does not hold for the unprimed variables; however, as in
(€2), for given g the ratio §/312 remains constant and finite. IHence
at large r the contribution (C6a) to the left side of (191)--at

large r" > r--1is estimated by [compare Eq. (C5c)]
o apE pE-E
dp’€ € i(@/?)gz I
.. o B
¥p f F* %

751
(c8)

1R
<!

In other words, when two-body bound states exist, the contribution
to the left side of (101) from r" > r is of the same order of
magnitude as the right side of (101), implying that Eq. (101) is
invalid. On the other hand, when there are no two-body bound states,
the continuum contribution to the left side of (171), estimated by
the center of mass analogue of (C5a), readily is found to be of
order r mé; correspondinglf, Lq. (101) should be valid vhen two-
body bound states do not occur. Of course, the presence of three-
body bound states also does not adversely affect the validity of
Eq. (101).

I add that since G(+)(r”;r') behaves essentially like G (+)(r”;r')

v T 12 A A

'

when " » © along v.,'

V19 the analysis of this section--relative to

interchange of the order of integration and limit v + o in the
GF(+)V12G(+) term of Lq. (99)--applies also to the corresponding

interchange in the integral on the left side of (103).

C.3 Comparison of Egs. (97a) and (97b)

Tt ig of interest to compare the r' > r contributions to the
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integrals in ("7a) and (°7b). 1In particular, I shall compare
Kn (dr"G (1, 1OV (1) G (1 ¢
~ (.‘u')/" 12 Igz) F(I)):)
T 0wl|ly (cn

from (27:) with the corresponding contribution [evaluated in section

.11 from (27a). As in section C.1, no r remains finite as

¢
r> o || Ve

=4
In the integrand of (C%), GF(+)(r";r') is of order p" " as
ad (a4

" =+ o, Thus, recalling Lq. (C5a), it is clear that the r" > r

11/2

contribution to (C9) will be of order r unless there are import

+ .
contributions from G( >(r;r”) as r'' > = along directions v.,"
corresponding to propagation in two-body or three-body bound states.
Suppose, first, that two-body bound states uj(EIZH) exist. Then,

recalling Eq. (A3), along such directions v.,", lim G(+>(r;r”)
1A} ~12 AS oo
572 e X - (-)*% -~
" e and to V¥ j (5), But, now
=)
124f

(1) its incident part, which is proportional to u

is proportional to p

_ %
referring to Eqs. (115), V¥ (r) is composed of two terms:

*
(312), and thus

3

vanishes exponentially because it has been hypothesized that Tip ™

8

*
with r; ({1) 4its scattered part, which--because of the uj V23 and

%
uj V31 products in the integral on the right side of (115b)--
~5/2

clearly behaves like p at large r. At large r and r" > r,

therefore, the two-hody boUnd”state contribution to (C?) fron

-1X _R
G(+)(£i£”) is at worst = e ~f~ p"—S/2 5"5/2. This is equivalent
«1K% R
*f ~/p|‘5

9

to replacing G(+)(£;£”) in (C9) by a factor of order e

; -4 . .
which is small compared even to the p" = contribution made by

)

ant
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propagation of G(+)Q£;£”) in unbound states and which [after

performing the angular integration over v.,'"] obviously makes a

a2

contribution to (C9) decreasing more rapidly than rwa. Similarly,
there are negligibly small (compared to r"4) contributions to
(C9) from propagation im three-body states uj(§12”’£23")'

It follows that the processes of integration and lim as r > = ll;&
can be legitimately reversed in (C9), and therefore in (97b).
Evidently the fundamental difference between (97a) and (97b) is
that we have G(+)(£f;£') in (97a), while in (97b) we have G(+)§£;£f).
As a result, because all the complicating contributions at large

" (+)

r' arise from propagatlon in bound states, and because GF never
VY 1

propagates 1n bound states, these contributions are more important
in (97a) [where E' remains finite] than in (97b) [where all L are

becoming infinite with r].

C.4 Tg. (123) and Related Expressions

T wish to show that the interchange of order of integration and
limit r > « is unjustified in (123), even when the integral én the
left side of (123) is convergent, i.e., even when bound states do
not exist. In other words, I wish to show that the contribution to
the left side of (123) from the region r' > r is not negligible

+)

-4
compared to ¥ as ¥ + «, even when G cannot propagate in bound
states. Consider, e.g., the Vlo term on the left side of (123).
Then, under the circumstances described the r' > r contribution to

this term is estimated by an integral of form
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K. -q, v’ :
dR, d e q}_ ’L(}i& g+5i1&, C.L,é- )%au ~iL )
C10
j dc‘,\z Il (‘YQ) Alz) ( a)
where the subscript f corresponds to directions 3f"§ vlzﬁ'e Replacing
arl 2L
)% #*
Wf( ) by its wf part, Eq. (Cl0a) reduces to

‘L VE 1(K R+ K °Ir) L(K E‘+=~n.~ %:1)
dR dam_ e (C10b)

f 4

Next employ Eqs. (90c), (A4), (A6),and (All), and recall Eqgs.
(A1?2). Therewith, much as in (Clb), it is possible to rewrite

(C10b) as

(cliz)

(C11b)

where the definition of B [not to be confused with E_of Eqs. (171a)] is
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B = (‘ﬁ,i“ig)@ (\ﬁizfiﬁ,\ (clle)

§ pr

Thug, as in the transition from (C2) to (C3), one can replace (Clla) by

o0 co :
1, 'E £ Bp'
dF'F'eFEJz(BF') o df"o’ BL(F - ) (C12)
y o BOF ) (e

From the results of Appendix F [or directly from the defining

relation (25d) for the components of the nine-dimensional pl,
bs ad

2 52 ~ 2, 2

- ' (Cl13a)
f’ R + Yo+ o a
where

~ \/2
¥ = 2
aqr (——»&2’;) AP

,h (C13b)
For given Ve in (123), therefore, I can write
~
R = fcosG
g = }oAUnGCoatp
,A)z . . (C13c)
f1~\2' = U/’ /6U7\€’55UYi9p
where the angles 6, ¢ are determined by the given direction‘gf.
Hence, from (Cllc)
)
2
~ 2 ~ ' \ L
:-[ ' JE ) ( L JE psind capi ]
Bf- (ﬁtf f-fmg'ﬂg t E‘Zif f Spw,) (C134)

where BR’ Bq are respectively the directions along which B, g approach




L2
[a%]
e

infinity in three-dimensional physical space.
Now, finally, let p' = px in (C12). Thus, as in (C4), and

using the Riemann-Lebesgue lemma, (Cl2) is estimated by

P* ood e**f’fx*’—‘i'*"‘f"""1
_J X

f5/2 y [ B‘(:ﬂ-)] 52 ’?3/2

iR

(Cl4a)

wwhere

~ 2 -~ 2 Uﬁ
B|(x) = [ (1}51 - JE/GO'& GT‘"R) +(DCKRZ“[E- S&n»@?ﬁw)] (C14nb)

The reader is reminded that Ei’ Rips are fixed by the incident

wave *1 in (123), and that’g?} Eq are determined (along with 0, ¢)

by the given direction y If (Clba) has a point of stationary

£
phase in the range of integration over x, which is conceivable, the
left side of (Cl4a) could only decrease even less rapidly than p“3/2.

Consequently it has been shown that the continuum (non-bound state)
contribution to the left side of (123) from the region r' > r
assuredly is non-negligible compared to r-4, which suffices to
demonstrate Tq. (123) cannot be valid even in the absence of bound
states.

The preceding analysis also immediately demonstrates that Eq.
(1242) has been deduced via unjustified manipulations. TFor (124a)
to he justified, it 1s necessary that the r' > r contribution to Lq.

)
(42) be negligible compared to r f Thus, for wj of (21a), and for
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the V., interaction in V,, I must estimate the magnitude of
12 R

{_ -T- K +'kf'.4z] +
dedcy,dv eF e K8 * gt V(y )@r“ “

12 ~12
2 MR 2

f

. + . .
in the range r' > r. PTeplacing Wi( ) by its incident part Yy,
and performing the integsration over dr12 , one arrives at precisely

the expression (C10b), which has been shown to be of order
- n, - V
5 3/2 A 3/2

N.E.D.

v

Furthermore, the aforementioned preceding analysis 1is almost
as immediately applicable to the validity of (125), and to the
corresponding Interchange of order of integration and limit‘£-+ ©
in the center of mass version nf (42), Evidenfiy the center of

mass integral which now must be evaluated will reduce to the analogue

]

of (C10b), namely
=) e . ! . . .
T ¢ ‘/E -1 K %n 1K' %,
dg, € e e
~ 2 F's/z ' (Cl6a)

For the center of mass interchanges under present consideration to
Le valid, the contribution to {Cif%a) from the range r' > r will

=5/2

liave to be negligible compared to F at large v. In (Cl%a),
- n —
moreover, (1l1l6b) relates p' and ql?', so that now qlz' = p'; also,

using (90), now
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KI =_2£35\/€ﬂ:._2 = Zf_"an-g

consistent vith (116¢). Thus (Cl6a) reduces to
_ _2 PVE IR "K .‘\/EN]
drd ‘; f' F e ~.z[f’ e n (C17a)
’5/2
00 [} 1?' E N -I~ \/:—fv
= | dpe J | 'Ky~ VE 1’&])
° (C17b)

Letting p' = xp, and comparing with Eq. (C8), as well as with the
arguments reducing Eq. (C12) to (Cléa), ome sees that (Cl7b) is of
-3/2 - -5/2

order p , i.e., non-negligible compared to r

It is completely obvious that the r' > r contribution to the
integral (131a) involves precisely the integral (Cl6a), so that the
result just obtained also implies the r' > r contribution to (131a)
is of order © =372 =¥ _3/2

C.5 DBound State Effects in Transition Amplitudes

To begin this section, I examine the r' > r contribution to the

left side of (123) associated with propagation in two-body bound
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states; suci contributions were deliberately ignored in the preceding
section C.4. In particular, concider, e.g., the qu tern on the
left side of (123), and suppose a bound state uj(£1°> exists. Then

the contribution in question is given by [comparec Lgs. (Al%a) and

(C10a)]

i ]
tﬂ -'15 R_ (k(.\ %+blll‘r‘l+K\-\Ll (kn.)
dﬁdavdv e . (r AL (w— E) VL
~12 Az J {c13)
The notation in (C18) is complicated by the fact that,£ o || Vs

[recall (123)]1, while r' is becoming infinite along qu’. T will

retain the subscript £ for the r » « M V¢ process, and therefore
. NOE

drop this subscript from Y

_ G (o

incident wave ¥ associated with Wl7j is [recall Egs. (115)]

- % -i.!s‘ : f? " .
fqr( ) € " n-/l'fj(xlz) (€19)

, with the understanding that the

g

]

where the primed wave vectors K', K are associlated with the
AS

~12j

o ' X = ' , -
£ > ]I Y12 process; moreover, ulz Kin 5% lq , where L12j
satisfies (114b).
- —)%
The incident part (Cl9) of lej( ) in (C18) vanishes exponentially
*
as r > [l v Vgs 8O that Wle( =) in (C1l8) can be replaced by its scattered

part. Thus (Cl8) reduces to

VE-g; k'R ipJE (KR g,
, g i K'R E (K R+ K. %)
df'd fsef QZN ’lf e?’( ) 128 %1 (C208)

r"S/z F‘J’/z
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1 . . . — ¥ o PN X -
viherc p is given by (102d), waile p' = 010 1s defined Ly (AA). Dg.

~ {2 (c2nb)

where'g [not to be confused with £ of Egs. (171b) ] is

~ f (c2ne)
Consequently (C27"b) is estimated Ly

v B3 ifvg%éi’ icfﬂ 0

oS
-“‘_ d ¢ 15/, 1{’ gmf,_,.m 1 éff e e
t fw 2

e

P

where the argument proceeds along the lines of Igs. (C12) - (CL4).

The result (C21) is small compared to the continuum contribution

exanined in section C.#4, but definitely is not negligible compared
"
tor .

Note that if one pursues the above argument for the casc of a

three-body bound state u‘€£l°;£73>’ the r' > r contribution is

- Y%
negligible, for then [among other changes] Wl?‘( ) in (C18) is

! =
replaced by precisely e "~ Euj(rlz,r23)° in other words ¥ in (C18)
now will contain no scattered part, a result associated with the
fact that the Hamiltonian is independent ofqg. To this result

corresponds the additional fact that there




332

are no S-functions in (120b) associated with three-body bound states.
I also note that 1in the center of mass system the analogues of

(C18) - (C21) yield an r' > ¥ contribution of order f~5/2

, as is
readily seen; consequently the possibility of propagation in two=
body bound states also invalidates Eq. (125).

The bound state r' > r contributiéon to the integral (42), for

Y, of (21a), is estimated by

P E (KRR Y,F K G,) s
dﬁldq,’d'r' e‘-f e ~ 12 ~\2 12 ~12 v (I:J)e u' (T:z
~ A 2T e (c22)

where the first factors arise from Gi(+)= GF(+) in (42), and the
last factors from Wi(+). The integral (C22) is essentially of the
~5/2
|

type (Cl0b), except for an extra factor p in the integrand.

Therefore, recalling (C1l2), the integral (C22) behaves like

p_3/2 p"S/2 = pué at large p. The corresponding r' > r contribution

to the center of mass version of (42) can be seen to be of order
5-5/2, still not sufficiently rapidly decreasing to justify inter-

change of order of integration and limit_g + oo II Ef.
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APPENDIX D. APPLICATIONS OF STATIONARY PHASE METHOD

Page
D.1 Egs. (105).cccccoveee besessseseans beessesaeassocseacsenasenaas 333
D.2 Eq. (1168) cecsvcocssososssccososasassossnosoossassons cveoveoos 343

D.1 Egs. (105)

The first step is to derive Eq. (103). By the same reasoning
as 1s used to derive (53a), one can see thattthe free-space

Green's function has the expansion

1K(R-R) 1K, (5,790
G.(r;r"E+ie)= ' |dKdk e o A 3 (r -r”»ﬁ§z+ie)
Fhvmrny 3 ~ i) ‘3F Mt AR g
(@) n

where Eqs. (28d) and (35) define klZ in terms of the integration
variables }5, }312. Here Bp is the one-dimensional Green's function

introduced in Eq. (103) which, directly from the defining equation
(24) 1s

("

901 1o = (R [ ) s (1))
%ﬁ q ”nff; li? “lil')/z
eu%é‘l“

"E
~1 ~lL
A

f
LﬂT 7:@”):!‘1,1

(D2)

.‘:2‘2—
W
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Similarly

Pacd

(2m)®

with 8y, defined ae in (75).

Thus

L
Q'Z(r 3! JEvig)= ! JdeKe
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jd;; 6. (11" Exie) Vy(zh) Gy (1) 1 s Evie)

.(B—B)‘i".z(q‘z 12

= | ) ! 1L
(2—‘55 dI,;d € 3F(r|z i /A""" E')V(T )j (.“12.'”\23 2/\4',:1&) (D4)

Employing the notation of (A6) and (All), the integral on the right

(8}
side of (D4) takes the form(z’)

5”’ iK(B-R) K. (5.5
{ ZM) (2P3P-) d*"deK e &)e ”"“’L%lzcim)
(2m® \ ¥* +* )
(D5)
jF M) Elt HF’) z(t”')jgz(t;;.')ze{ﬁx? 19’)
where
E = Wky o E-K™-K. (06)

%

12

ol A,

Now introduce the six-dimensional vector 1&12 = fiof Eq. (Al2c), and
A P

define the corresponding six-dimensional vector s by

’) ! (n7)
~ 2 ~l2 ol ~rl2

3 - (R-R)e (59

i}

BN
!

o

where Pygs P ' are defined as in (A4). Then Eq. (104b) holds; also,
L12° 212

as in (Al2a),
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1 R) :
'Lg_% (% +§5Q(%ﬁl Cj”ll)} 1350@3@‘
@ = ﬁ . (NP)

where 01 is the angle between the six-dimensional vectors s and

e s

lad

I now introduce spherical coordinates in the six-dimensional

~r N
77

7,1 space, with polar axis along s. If ¢, is the unit vector
P~ ~12 A

al

along 5

A
‘é = € cosh v @ a (p2)

vhere a, is a vector of magnitude ﬁisine in the 5-dimensional

A " i 1°
e d la'd
subspace [of the original space subtended by Vl, ;1 ] orthogonal to

¥.. In this subspace pick some other unit vector ¥, as polar axis
~1 ~2

for ay- Then, as in (P
-

A . A
a = 00, @ a = Esmb b v+a,
A~ i & roa AL ey ~ (n10)

where 8, is the ancle between a, and V..
2 © 2 a2

Proceeding similarly, it

‘t

1s obvious that

. . . A
c { m@a{gi + Aw&fm@zf'ﬁz + AmBamb b T,

a4

o A e A
+5mB, sim8, sim &, 08, vt SmOsimd, by oimb, en by

{(Nila)
+ Sv’yx%ff ‘m% :s%m% %m% S Y :%

5

=

b
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where 21’ 02”"’26 are orthogonal unit vectors spanning the space
o~ A

of 534512’ and where the angles 8 .,64 range from 0 to m, but

l,..

0 < @5 £ 2T (D11b)

One then sees that the six-dimensional volume element

dVdK = deds = d€(EdB)(Esimbas,)

R
R

12

X (€ simb simD, 10, )(€ SimDsinsimB, 6, )(Esingsind,simd sinbd6; )

5. S AN 2 .
= & S\qu' A @?_svn Ggsmﬁqdagd%d@gd@ngsd&

(p12)

Using Eqs. (D8) and (D12), and performing the elementary integrals

over 65,94,93,62 the integral (D5) reduces to

2 QL "
Tl e suiog iy o

The integral over de1 in (D13) is known(30), Consequently, Eqs.
(D4) - (D7) and (D13) are seen to yield Eq. (103) in the limit

e > 0, remembering the discussion following Fq. (65a), and recognizing
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that the integral over d£1'7" on the right side of (103) surely converges

because V., 1s short range.

12
Replacing J, and gF(+) on the right side of (103) by their

32) o eiea
asymptotic forms( at large E, I1o0 9190 gives [as justified

preceding Eq. (105a)]

Ji Jdve‘*’u TV (H)60 (- E )

T‘?DO““;. ~/~l

. k' o k‘ n
= | Qp,,(ZM) (Z}Agg) dr” dt ﬁ cQ(AE 5rr) i el g L (D14)
COUESACTAC S B VS

Vot )90 (s Y B

where “1?f represents the (three-dimensional) unit vector along
Ao L

which becomes infinite in magnitude. In (D14), moreover, at

£12
large R and Q19> Ve have from (104a)
-8 a8 45w _i4€
¥ n
€ e +e¢ e

11}

/OCD(AE-%[)

_ifr - £ (RR+6.-6') .5 € LE[RR
M 1ﬂ£ _‘Lg(EE*:hlﬁ') -Z:I 1?;_ t_(g +%n.~ﬂ. (D15)

iz




339

whereln Pqop nOV is the nasaitude of the vector defilned by the
unprimed analoguc of (A&).

The integral over 8011 the right side of (D14) now can bLe
evaluatad by the method of stationary phase, remembering L¢s.
(n6) and (104L) - (1N4e) still hold. Of course, in this section
lunlike the stationary phase estimate (Al3e) of the x-integral in
(A13)] all constant factors must be carefully retained. Decause
of (D15), and because Vl?<512”) keeps rl?." effectively finite, one
sees that--at large ElZ’ Lioo ilz«-»—the 8 ~integrand in (P14) is
a sum of two terms, each of which is slowly varying except for a

io,

rapidly oscillating factor e =, where
() = Yok, £ £ € (016)

Therefore, the points of stationary phase 8+ satisfy

VZ
d = = dkxz = = 2 I ‘Tn'g
g6 0 gl (e th o

Lq. (D17) shows that there is a point of stationary phase only for
i¢

. . + . . .
the factor involving e . This stationary phase point is the

single positive root of (D17), namely

s
pa

(D18)

7
E = g— ?i E ’ = J?E:__EEL
%.ép;‘%‘%i%l“ﬁ: f




]
£
[}

where T have used (A%4) and, e.g., Tq. (25d). Thus, recalling the
fundamental definition (90¢) of the final wave vectors, one sees

that

2,2 (2, > /2
8 = ﬁ K_ir_ + P% Kcz-@
’ 2M 2 fhsg

(P19)

where, in (D19), Kf and Kl,,f have their usual definitions (28c) and

e { s tl i ; s k k Lo
(20¢) in terms of the final wave vector Llf’ Kog Lﬁf
llence the estimate of the right side of (D14) via the method

of stationary phase is

. . I /
\5/2 -5, 3 (‘5{-'8 t Kizf'?fnz)

L 2p, {2Mf’2(2/xaa\3”-<\/§ e e
e w el ) P

a0 L? ?& _?u (D20)
i PR T i (#I; u
di’ldbe e V29 (2 yas Bip)
0
vhere, in accordance with the principal of stationary phase
Q= p8) = glEN+ Lo ) (e-¢,)
+ T4 Y s der + (p21)

€€,

and where, in (D20), Eyog is specified as in Egs. (105), with blZf

the usual final wave vector defined by (29d). To obtain (D20) I

have used
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a, a' ~ . i . !
i?\ii’ o Riisy €+ 9 -9 = %n{- ‘-},1

‘2 — fin L
1 4 0,0

Turthermore, one has

AN T\'?-hl?.f"’ fnzgf LM ﬁfé + -ﬁ;—fé f JE

(O

I ! A 5
A2 - _RZ}A\I\ wE L. (Z}xu)mE - P
ICee, WP W Wk

In (D20), therefore
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(D221

(D22¢)

(n224)

(D233a)

(P23b)




(¢ %)
N

H?

o 14,8 ApE (P "E wo(E- €,)
%:ég%@ * ~ 8? 5 dt e *

O
(D24)

APE
= e ? c % 2“"‘-:1;@‘1{-
i,ﬁz
27, 124 ‘0

Substituting (D24) into (D20), and again using (90c) to eléminate

klZf’ the stationary phase estimate of the right side of (D14)

becomes

32 -u: E K RHK
. Z/ 2 »f/zg/ 2M \f}zg Zﬁggx Izﬁi%wgﬁ% if A L( ‘wq, )

e ——

e \we/) URY VR 2 pt

( " “;‘%%’?\; w© (DZS)
X E&? @ "'W. ﬁ (,‘,gz) ~(z) E!If)

Mz

The result (D25) is equivalent to Eqs. (105), nothng that, from

Egs. (90a) - (90b)

(D26)
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N.? Fq. (1161\

Tf r1p 18 kept finite, the term r12k12 must be dropped from
i¢,

the equation (MN16) for the rapidly oscillating phase factor ¢ = in

5 ) An (D12)

(P14); in fact, T should not have replaced gT<r1°’
by 1ts asymptotic form. !owever, ¢i(€;) = ple.zum no point of
stationary phase. Tor directions Ve = Yiogs therefore, where 1
remains finite, the preceding derivation of Eqs. (105) is incorrect,

even when no bound states Uj<rl°) exist. On the other hand, in the
L i WA
absence of such Lound states, the desired asymptotlic hehavior of
';E} can be deduced from (1122). I note first of all
. =2
that the intecral in (112a) appears to converge when gF(E 4 de)
(+> z 2\ mi
1ig yeplaced by &p (€7, Thus use in (112a) of the analogue of

(r2) forx sA) vields

or - ¥
tp(d19395,

i G(3,75E)- _La (.Q)m*(v'-%)

) J o~
Ci'-)m"v =1’ adl ~l1 ~i
g A :
K . K { (m27)
e P LR AP AP
X e
Y
where, from (112¢), K12 is defined by
-2 jﬁi.A'Z -t 2% 2
8 = Ksz = E— "’h &ll
(D28)

Becausc I and '

Lo 90

all now are being held finite, application
of the method of stationary phase in (D27) now involves merely

finding the point of statlonary phase of
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A
i iz . - 2 2
e = ex%gl% {2’/‘%&,\ {E“"Jﬁ hsz) :i
— rmoay
i2 ﬁz Z/A“L (h2a)
A
This point of stationary phase kl" = kl"f satisfics
A A A _3/
— 21 2 o z e 7 X 2
d (E ‘Jﬁ hll) =0 = "'ﬂh é‘qlz {E"%ﬁ %Qn.} M30)
oy _,_,..,_.2 > ihn, 130
dk, 2M Mo .
Fq. (D20) does have a solution, namely kj?f = 0, to which corresponds,
A A
according to (D28), a value of 1*112 = Kl?F precisely identical
with (11fc). Mnreover, at g‘lZ = k]?.f =0,
A 73 e
2 — 2% 2 2 A
& (E’?3h1> = ~% E =-ﬁ
Y — N "= (m31)
OHQn_ Z/MD' 2/“.2 (E ‘—W'kn_)gb‘ %‘ 2}Au.E &
Consequently the right side of (D27) reduces to [recall Igs.
(D21) and (D24)]
oo Ay
K o KD bq, k
& ﬂK!'l—f% "j'g(’z@,‘}.);z.% A AZ =1 %W_ iz
RPae bz, 0)u(z';00e M Ve T S dk ke € o
1 ) i/ n 1 (n32)
iﬂT% iz
o]

wherein b 18 a cemstant, namely

=t

¢
&.
;}3

P

I
N

)

»]

N
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Sut
oo N _axi
ax"x & = VT
3 N34
> 40\ /2. ( )

Employing (334) in (P"33) with a = 1hqq0s and recalling (116b), one
sees (D32) is precisely identical with the right side of (11fa),
with [directly from Eqs. (97)]
3 3 3T/, 5/
C (E)= zﬂuk 2hap | € JE
2 7.5 } > = (n35)
a7 H 2[E Qr

I note that an attempt to derive Egqs. (105) starting from (112a)
as in this section, hut now letting Lo ™ ° along with 9195 runs
into difficulties which possiblv may cast some doubt on the exactness
of the result (ll6a), but which I do not believe can alter the

i5¢€>55/?

fundamental (for the purposes of this worl) e " dependente.
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APPENDIX E. ASYMPTOTIC BEHAVIOR OF SINGLY ITERATED INTEGRALS

Page

E.1 Egs. (106)............ e e e e s s ettt eenaseenos Ceevenn 346
E.1.1 Reduction of (E8) to (E9) .....coiiiiiiiininnennnnnnnns 351

E.2 Eq. (132) ............. e et e ee e u et s et et e ... 356
B.3 Asymptotic Form of 8,°C) 360
E.3.1 Singularity in (E28)............ e, 365
E.3.2 Neglected Terms in Eq. (E24) c..vviiiirencnnarooaonnss 373

E.4 Derivation of Eqs. (175)............ beesseceesececnseecansens 374

E.l1 Egs. (106)

I wish to examine the validity of employing Eqs. (105) in (80c),
so as to yield the asymptotic form of G(+)(£;£') at large
rs large %, 999 and Tio- The asymptotic forms of the first four
terms on the right side of (80c¢) already are known,by virtue of
Fqs. (90) and (105). The problem is to justify the use of (105) in
the iterated exnressions on the right side of (80c). Comnsider, e.g.,

the r,E' element of the term
&5

(%) 32

G+) a| y upt? s " “’,,," WA
6,6, V8= |dr "6 oV r6 (rty ) (€56 (r )

-

(ED

where it is understood that the iIntegral overlz” is to be performed

first. Eqs. (1N5) yield the asymptotic form of the r,r''' element

e

Ne) (+) ‘ '
of GF VlQGIZ in the limit that 5& ilﬁ

infinity holding r''' finite. Recalling Appendix C, it is clear
ol

and L1 approach

that use of (1N5) in (E1) will be justified provided the contribution
to the right side of (E1) from values of r'''" > r is negligihle

~4
compared to p at large r.
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The argument Is very much as in section C.1. I note first that
because of the factor V23(£"') in (F1), significant contributions

to (E1) at large r''' can come only from those r''' approaching
g y x P

''"" wherein r,,'"' remains finite. ext,

23 ~23
using (95) and (Al), I note that

infinity along directions v
~
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M () " W (£ D] v , o {+)y g " (‘92 o
€&~ GF (:f)?: )vez(?: )Gn(}: ,‘,E”)’“ oy GF(‘Y‘}? )Vng‘;)gz £sr) (E2)
Yhus the Iiuic of the left side of (22 as 1©''' becomes infinite

from Ygs. (105). lLxamination of the derivation of

e

Tge. (105) [in sectlion 2.1 will make it clear thai Lgs. (A0Z

s

renmain valid as they stand even wlen the direciion Y. = Y

which r ~ « corresponds to Lolding r,, finite; in particular,
Poioke

vecnuse ., becomes infinite aloug v,., the results of section D.2
L4
arc not germane.

i1 other words, with r held Ilixed, Ngs. (175) imply

&b

e
-

b Jir o6 s o9
~)r— A ) o~
Y"' oo;b)zm ) (7%)

m vay

B
Wihere

@(_ -'L}S_F'B -'ngu_;'gn_ (_)*‘?' . m) |
2 { i 26 N M2 ) A fof (E55)

and (175c) continues to hold; however, because t..''' has been
L

1 ey T ¥ T vyt

ept fimite, the vectors I Tom o, o are interrelated
P » b R 5 e S I X -
LRI 9 T e e - T 2 b
by the condition L,,.""" = 2. I uow ewploy Hqs. (E3) in (Ll1),

&f oL
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supposing first that bound states uj(£é3) exist. Then the behavior

of (E1) at large r'"'' > r is estimated by

dR"dgr de”

2% ‘NZB

"

‘I’ " '15:'56‘%‘!&#%:1

e

”' " IF E eJ "IK{.E “’tt L (B4)
)‘ # («;;,J,ulzf) ~23)e €. (!:)E)
f 278 et 12

In obtaining (E4) from (E1) the laboratory system analogues of Eqs.
(115) have been used. In (E4), however, the detalls of Eqs. (115) ~~which

give the precise dependence of lim G(+)(r"';£j) on r' as r''' becomes

infinite along y'''--are irrelevant; the analysis which follows
W VETE, o
uses only the fact that this limit is proportional to e J/prre

9
a result which hardly can be guestioned. In effect, therefore,
the estimate (E4) of (E1) could have been written down even without

foreknowledge of Eqs. (115).

In (E4), p'"' = p23"’, where p23"' is the 2, 3 analogue of
~

the six-dimensional vector defined in (A4), i.e.,

i G

4 23 ~ .h?. (E5)

Moreover, making use of Eqs. (90c) and (B2), and remembering ;73"'

is remaining finite as ES"', q23"' become infinite,

~e




$h0)

i

-1 K
e ~§2‘F —-eXF Tz}iﬁR\/‘ l‘L -E‘-_}-_’QXF 2m3m f ~13 A/il (E6)
fl” A4 ,h M f:;

to the order of accuracy needed to estimate the dominant asymptotic

. - . (=)* .,
behavior of (E4). Cimilarly, at large Lio where ¢12f in (E4)
ultimately is to be evaluated--

pm
LR
(=¥ w YR
¢ -k }’:‘:e o 4 axp| i8Mn vE q’za?’
12¢ z\-ll) ~12é — "hz o €7
T
q:Z qﬁl faza g
Tho right sides of Lgs. (E6) ~ (E7) show that the expressions on

tlie left sides of those equations—-vhich occur explicitly in (D4)--
q P

LR LRI Tt

depend only on the direction of Pon = Pon Voo , hut not
o L LT LD

on its magnitude. Therefore, now dropping the distinction between

LIRS 1 Tt ey

o and pyq , the behavior of (U4) at large r''"'

> v is

b ]

estimated by

: o't " - 1/ n
w o w8 APVE SiKCR K Ty 1f——
(ﬁf ‘dy " fm e e £ e né e @ xzf f -

3] ———

joulq 'T}z f,li572

EE B A | T T - o9

~f P X12f ’1“12}?

P9t

vhere are independent of p .

i Ty
AV, n
L

T now claim [see below] that integration over brings
~5/2 . .
actor décreasing no less rapidly than ¥ , 50 that [compare
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Eqs. (C2) - (€3)] the integral (E8) behaves like

[ 9] . mj"" )
1p VE 1p"E-E,
d'om 6 f e .F S i (£9)
w 3. 5/
}fr jp 2 fy:2 P2

In (C3), the factor Jz(plef)/plzz, resulting from explicitly
performing the integration over q¥12" in (C2), also behaves like
912“5/2 Y r~5/2. Thus (E9) behaves essentially like (GC3), except
that (E9) has an extra factor r12~ s r“1 (remembering I, Ty9s dq9
each have fixed‘z—dependent ratios to r as r > Il v). 3But (c3)
has been shown to be of order ruh. ience (E9)--and consequently
also the contribution to (E1) represented by (E4)--is of order
rm5 at large r, which indeed is negligible compared to pmé = r~4
An even simpler argument [which T shall not bother to give
in detail here] shows the contribution to (E1) from r''' > r
associated with three-body bound state terms ujQ523,223) also
is of order r—5 at large r. As in section C.1 [compare Egs. (Cla)
and (C5a)] in the absence of bound states the r''' > r contribution
to the right side of (E1) from r'"> r will decrease even more
rapidly than r“S. Therefore interchange of order of integration
and limit r - » 1is valid in (E1), i.e., direct insertion of (105)

into (80c¢) is justified.

£.1.1 Reduction of (E8) to (E9)

I wish to justify the claim that integration over QXZQ"'

5/2

in (E8) brings down a factor decreasing no less rapidly than r

This integration over the sixz-dimensional element of solid angle
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actually involves integration over five angles [recall Lq. (D12)].

In general, each of these angles will be represented in the 376"'_
~

v "',ok..,.'"'"" appearing in the

dependent quantitiee X " Slzf'

exponentials in (E3). loreover, I, dyps and r10~~which enter

<

linearly in the exponents of (E8)--each are large and proportional
to r. In general, therefore--appealing once again to the principle
of stationary phase--each of the five angular integrations over

432Q"' should bring down a factor decreasing no more slowly than

rwl/z. Failure to find a point of stationary phase in the allowed

angular ranges [quoted in section D.1l], or extra heretofore ignored angular-
dependent factors in the integrand [recall the remarks following

Lq. (B7b) ], can only cause each angular integration to decrease more

rapidly than rﬁl/z. The sole way to avoild bringing down an rﬁl/2

factor with each integration over Ga(a =1,...,5) is to have the
integrand in (E®) independent of that ean Such independence is
perfectly possible, especially if the polar axis in the triple-
primed space is favorably chosen relative to the direction’x along

vhich r > =, On the other hand, the basic asymptotic behavior of
lald

the integral cannot be altered merely by choice of polar axis; if,

5/2

as seems clear from the foregoing argument, an r dependence is

expected with unfavorable or arbitrary choice of polar axis, then--
with favorable choice of polar axis eliminating an angle (say @q)

1/2

from the exponentials-—--the apparently lost r ~ factor from the
integration over 6, must be regained during the rcrmaining integrations
over 61,...,64. Tor exarple, in section A.4, with the aid of an

appropriate choice of polar axis for 210’, it was found possible

T
[

write
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;
b
.
A
{
I
(o
L
[}
<
o}
=]
=
i
N
I
]
]
Join
[
S
%
D
6]
e}
e
}-..J
o
Jos!
\'T‘
’.-

ring) exponentials in (Al7) were
made fo depend onoa single angle only. Dub 1o seo Jolng the points

o7 stationary phase for the intepration over x vecame x = O and 7,

/.
where the sin y factor in the Integrand of (AL2L) vanished. Thus
[ 1Y /A ae AT 1 . o "5/2 1
Frocall 7A23e) ] in {A12D) the expected o dependence resulted

from a single angular integratiomn.

I bhelieve the foregoing argument thac (L8) must reduce to (£2)
‘o ooulte 'R‘»’!’\“",ll ~3TTECT Toweaever tey eliming 11 a 1t I

is quite genmerally correct. lovever, to eliminate all doubt,
shall detail the dorivation of (Z2) from the specific form (18).

In (CC), the volume element is the same as in (L4), i.e.,

" " wmS ne m S
dp"dy & dfzs dv olR"dg,

~ 23 ~ 23 /02.3 ~

Recollecting iigs. (i6) and (E7), one now sees that the integrations

over the directions of 5’ "' andgq ,,3' '' can be performed explicitly.

Thus (E8) becomes, using (90c¢) for X.""'
A

< Sl N/
e ").8'5F \/E e’LF ,/E-eJ .

13

ZMJE‘ RI”R

W V)

X 3 2'mg'm JE q‘za 2 8%? ’iZ}k\sz PP
M le ,ﬁz fln

dgmdq"” R

lald
vhere I stillam. using p = p . Hext introduce R''" and

defined in analogy with (Af), so that (E5) yields
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Fa "
1 & s ué

~ ik
= K Y
[ Pl
‘jil3 (iilﬁ

ence, one can write, as in (A20)

N/

R// - fm/f,03¢

(E11b)

e N i

%23 = /9 sin g

where p''', ¢ now are polar coordinates in the (two-dirmensional)

~»t vy

P d ~
od o . . Lod
R'"' "'' plane. In this fashion (remembering R and q,,3' !
Fa

s Yna
LA
are intrinsically positive), the integral (E1n) in the domain

' > r of present interest can be revritten as

/2
o m Hi v E i m\/ -8 . 1
dp 5o oifVEs, d¢p cos’gp s @ €

¥ A S R
X foleReop) 4 (339,40 P)

o, 7,59

(B12a)

where ays @y, aq are positive constants, depending on the masses
) , 1/2
- o P R
and on I, €.g., a, = (21 M) . The integral (El2a) reduces to
£

a sum of four integrals of form

(7] 5 fit T2 %a
o?j?"’ ‘pr HPES dg ewpaimpe Tt
K? jp

m 3/,
N 3, % o

3 (£12D)
* iazRDOMPe?; 1o G, Am @

x €
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e owrt o

2 = /C"‘r
R = /CzT {(E13)
= AL_T
Ya 3

where Cqs Gy, Cq are positive numbers depending on the direction
(in nine-dimensional space) with which‘z + o, Then the integral over

¢ in (£12b) is a sum of four integrals of form

Wz 1A cos{o -
dgcosgsing € (79  (2142)

o

with A and ¢l dependent on the a's and e¢'s but not on r. In particular,

A = [( + )2 2 2 ]‘/a (E14b)
0,0 T a,ty) +a,c,

But the integral (Ll4a) has a point of stationary phase at sin{¢ - ¢l) =0,
which generally will not coincide with 0 or w/2, and which should
lie in the allowed range 0 < ¢ < w/2 for at least one of the four
integrals represented by (Eléda). Thercfore the angular integration
in (B12b) gencrally is of order rml/z,which reduces (512b) to
oo .
AL ALE
(L]
o%'o €
n 3/, Y
y A R% 1%
f 2

(E15)
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FY O PR LI
QDA [

which in turn, using (U13), is precisely of the forn Jy ol

L.2 Tq. (132\
T wish to show that the interchange of order of integration
md limit r > o in (132) is unjustified, even in the absence of
L
bot ther < 8 in secti c.4]1 £ y present
bound states., In other words [as in section C.4] for my presen
purposes T can assume that bound states do not exist. Under these

circumstances the r' > v contribution to the left side of (132) is

estimated by

FYE = oy
é%’ &y e ’? (T) 2'5( 2_3)@\2) :I) (EL6)

Z
M f/ﬁ/a

In (E16), tlccause of the V23(5?3') factor, I need to be concerned

{

only with é' -+ o along directions g = 322 Thus, as in (CI6L),
Vo
~ ! =
9, ° A=) 9, = f
23 _hz (E17a)
and
1
- ;2;;
- iR
Kpse E)
(E17b)
()%
where the subscript f on K23f” [and on Wf( ) in (E16) ] here corresponds

to directions g' = )223', and bears no relation to gf of (132). Now, in

—~ (=% - % )
(E16), replace Wf( ) by wf , and use Eqs. (B2) - (B3). Eq. (E16) then
reduces to [after integrating over £23’ and proceeding as in Eqs. (Cl6) -

(€in)]
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«»;%:Q%JQVZ%

wm !
PLAAS TN o %
T m, V12i ~23 @

- f’?/a %'2’3' (£18a)
5 [F -iv’ o|VEQ m, “';E .
~ &"'dg' =2 e"ffge 1’323 E‘/E’ﬁ/zj: ml+mzf Ntz;j
- F st -15‘/2
R TIANC _’}

X exﬁ% %’5}2};') 'gpizif)
}?' (E18b)

Ilence the r' > 1t contribution to (E16) is estimated by

el e, H,ﬁ Ry

._, 3, ? 2 §2;3 /Yﬁ(«é'lml ~ITE 103

¥

Comparing with Eq. (C17b), one seces that (E17) is of order

~- =5/2

o i.e.

s , not sufficiently rapidly decreasing for (132) to be

valid. This result is all that is needed for the purposes of the

present section. Tor the purposes of the next section, however,

and also as a matter of interest in connection with the physical significances

r

of
contribution to the left side of

is neglicible

propagation

term (132) from (69), only states

the §-functions (135) and (141),

e compared to P

it is worth noting that the r>r

(132) associated with bound state

~5/2

In the particular

Y are of L1

[

of
6]

~Oz<:‘

N
o]
-

r
s

u.?

3 20




Yor propagation in such states, (E16) 1s replaced by frecall Lgs.

(115), or compare Ig. (Al6a)]

[

r Kz% %23 = (=% =+
idq’ e Y ‘N FyWY (e e s
3

One now follows the lines of an argument given in sections C.3

o T o (=)% oy s .
and C.5. TFrom Eqs. (115) one sees v23jf Q&) is a sum of two

terms: (i) 1ts incldent part, proporticnal to u, (r73) and thus
vanishing exponentially as r > = along ﬁf of (132), for which
o d
+ o gz ¥ > o (i1) its scattered part, proportional to

iﬁS -
P /L / At large v, thercfore, (E20) behaves like

. 1K23Jq’25 ”‘f’fm t, +'m Km‘ N {k’Z%ﬁ"ZE
&O@ 38 e

Om f% Y 23

= o :
'r.ffg . ( 23, &m)%’zz ' ~ -T2
eJB 72 d%ZBe J 30(;:;%5 . 23) S
Y5

P

Because of (E17a), which 53till holds here, writing the lower limit

of the q?gi integration in the form y'p—-where y' is a constant of




3y
) 1/2
dimensionality b /2upp)  Ys with y as in (E9)--is admissible.

The integral (E21) is identical with (B5a), which [as shown in
section B.1] can be logarithmically divergent off-shell, but is
convergent on-shell, the clrcumstance of present Interest. Thus

the result (E21) is valid, and demonstrates that the v' > r
contribution to the left side of (132) indeed is negligible compared

‘-5_5/2

to . In this connection I note that the conslderations of the

following section could not make (E21) decrease less rapldly than

6_3; actually the 3—7/2

regult probably is correct, however, because
(E21) shows no sign of a point of stationary phase.

I close this section with some parenthetical remarks bearing on the
interchange of order of integration and 1imit‘g + ® i] gf in the integrals
(162). According to section E.3 below, the quantities 5a88(+)§§) in
(162) are of order p =2 at large r. Comparing Eqs. (162) and (132),

and referring to the argument leading from (E16) to (E19), it is clear

that the r' » r contribution to (162) normally will be of order 5 _7/2,

i.e., sufficiently rapidly decreasing to justify interchange of order
of integration and limitiz + ® ,I gf in (162): the existence of a point

of stationary phase, as in section E.3 below, will make the >

-3

contribution of order 5 , still sufficiently rapid for the aforementioned

interchange in (162) to be valid. However, there is a difficulty with

this attempt to justify Eqs. (165) via an appeal to (E19). As section
E; —2@1.’\(}9)

E.3 below discusses, © at large

+) -
QBS( )(E) actually is of ovder
p, where the precise expression for A is very complicated and pot known.

Therefore, the ¥' > T contribution to (162) actually reduces to

integrals like

-
ds € (822)
1 ,,,,M
v[ 72‘
_ p /4




e §

PO S
. Anag v

where ¥ [which depends on 1 -
Hsr A sar f

presumably is v c¢p' at large p',

but where the posgsibility that ¢ = 0 along certain special § [for given

£

ki} cannot be ruled ocut. When ¢ = 0, the Riemann-Lebesgue lemma

(31 is

irrelevant [compare Eqs. (C4) and (C12) - (Cl4)] and (£22) is of order

- =572 - =4 = . . .
p / at large ri TIn other words, the r' > ¥ contribution to (162) may

[~ X
e == 2 f L = r PR
be of order p '° as oo along certaln special Vs in which event
2 o ¥
interchange of order of integration and limit y + e ll V. would not be

£

legitimate for such gfe Note that we merely have not eliminated the
possibility of such special §§; there is no particulay reason to think

these special v, actually occur.

E.3 Asymptotic Form of 5i§<%}

In this section I shall show that & given by (69) has
parts behaving like ¥ ~ = § ° at large r. Consider a typlcal term

in (69), e.g.,

AR, EW i AWM iy _, - |
G vgg@;& = a?c@jjfm@ é‘fﬁjj’;ﬁ}é{ ggézg T) g»@@:} (B23)

Because [using (10Za)] the contribution to (E23) from the integration
mv - s m"s/z - .

domain ¥' < v behaves like P as ¥ + «, any contribution to (E23)

=2 = -

behaving like B must come from integration over ¥' > r. In other

words, in the present section I am examining the very same contribution

as in the previcus section E.Z2. Now in section £.2 it was shown that

the contribution in question is of ordew ﬁms/zg which was sufficient

to show (132) is invalid. However, as has been pointed out earlier

[section C.4], the condlusion that (FE19) behaves like P

assumes that theve is no point of statdonary phase in the integrationm
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ranpe y - g ° = {alter introducing the new integration variable
y o 5‘{5); if there is such a point of stationary phase, the integral
(E19) —-and therefore the r' > r contribution to (E23)--will decrease
more slowly than 3’5/2, However, to demonstrate that such a point
of stationary phase really exists, the analysis in the preceding
section is too crude. In particular, the parameter v [first
introduced and defined in section C.1l] is insufficiently well-
determined to permit a decision that the point of statdonary phase
lies within--rather than without--the range v < x < ». For the
purposes of the present section, therefore, it is not useful to
proceed as in section E.2, where 6(+)(§;%') in (E23) was immediately
replaced by its asymptotic form at ¥' >> ¥ (#n the absence of bound
states), thus ylelding the previous section's starting point (E16),
Instead, I argue as follows. I am interested in the behavior

of (E23) as‘g' + » glong directions EZB" along which E(+)(§;§')

behaves essentially like 623(+)(§;§'). Iin other words, for my
a(+)

(+

present purposes, in (E23) can be replaced by G +) fas a

23

matter of fact by EF according to section E.2, where it was shown

that the dominant asymptotic behavior of (E23) stems from the contimuum

—(+
propagation of G( )]a

iterate §<+)

Equivalently, and more rigorously, I can
in (E23) vyia the center of mass analpgue of (63b),

yielding
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6V, B = fim G (Evie) Vi, 8, (F)

= fim i@ (&,4—1@) G (E-ﬁ-‘bﬁ W VgtV )é(E } @
€0

—-gﬁ,m[ezgam) -*éz_gém)(ve,* ){Giw\/ﬁ }}
E>0

2y, F® ém V. 4V {é’“’v “(—H}
) 623 \/23@%2 23( =3 lz) 23@'2 (E24)

where the integrals in the braces are to be performed first; as usual

in this work, the manipulations in (E24), like
derivation of (67¢) from (64b), are considered
integrals involved are convergent at € = 0. I
E.3.2 below] that any p -2 dependence at large
right side of (E24) cannot be cancelled by the

My starting point for this section, therefore,

(+) (+) ~ ;E“-i-"li
G @ €->oo 33( )
= éijgngdj G;(*‘%F . Eﬂe) @23
”, iy
i 1 (drd (S8 (1
£0 (Qw)aj ~oo V23 023

3, (%)

the manipulations in the
legitimate because all the
next claim [see subsection
T in the first term on the
last two terms in (E24).

is

é@(+)( )

(E25a)
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N . vt TN T el At A AT inace arsal mosies o~ (M7 -
vhere I Lave used (72) and the center of mass analogue of (D3), and

¥

viiere the 2, 3 analogue of (35) Jdefines Kk, in terms of the integration
w2

17

variable K q.  In (E25b), and in the remainder of this section, the
Lol

dummy wave vectors &k = ns Koo are to be distinguished from the
~ 3% w23

=)

incident wave vecteors l,, from the final wave vectors Sf {corresponding

to Gf of (132)] and from the wave vectors E.' [corresponding to
s

£

r' + o along some V'],
o Y

Recalling Eq. (40b),

- § i & = 4 4
di’ = d', dg,, =dy) d1

~ 12

aas)

Thus, using also (B2), the integral on the right side of (E25b) takes

the form

. . ? K + ‘YVI. K ‘]

) p Z,}S * 9 LT Lazs wWtwm, ™12
Mom_L ldrde'dk Je~® “® e 7 >
£-0 (2-“)3 ~23 ez ~23

a F Y ‘ !, b2 . t )
X & 3(%3)&&_&3“5)\?}53)% (1723572,1)
23 2”23

At this point I shall interchange the order of integration over dif,.,
and d£23'd§l2', on the basis (sections 2.2 and A.8) that the result

of this interchange leads to a convergent expression; the integral

]

(E26a), which is identical with (E25a), is of course known to be
convergent even at ¢ = 0 [section B.1]. Once the above interchange is
performed, it is obvious that the 1imit € + 0 sgain can be taken under

the integral sign, yielding, in place of (E26a)

(E26a)
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o ’*523‘%'3 (o 13& QU () 1 LR 15
e @%S e # {dy e ¢\1 (Tsz}h?g) dr % <~zs}f13‘)$ k, )

23 ~iL ~23
(Z‘W)s 13
(E26L)
(? )@ AP Q.
23\~ 3
here
(Q , z ¥<‘23 4+ i !S‘Z
e
~ M+, %
(r26¢)
= m .
§§2, E %5'255 ~12
-+ 5
T desire the asymptotic valuc of (U26b) at large r = FansQane
7~ LD adl

In pursuit of this objective, I anced not--and should not--make any
immediate approximation to the value of the integrand in (T26L) at

large q.. [as was done in section I.2]. Tllowever, because of the
) ]

h
+
factor sz(ﬁya')> the Green's function o ¢H)

£ in (E26b) can be

replaced by 1ts asymptotic form at large na- In this fashion one
secs that in (E26L)
1t Q
' 4 ~23 ~ 2

j ~23 (23 ”13)~23’ s 23\~23

~ e"kza?zz F (kzg P - Q > (E27a)
Va3

where F, is a well-behaved function, and JET: denotes the direction,
o

in three-dimensional physical space, along which Zon becomes dnfinite.
oot
Similarly, it must be true that
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P ‘:;;?;ON k) _ ‘ ) ‘
ar e ™ ﬁz {:g:’ : %ZJ = ? {/A%Q _ (}g l) (E27b)
Hence (E26b) has the form

~23 %3 'Léez%z
&K € EE( 23 Z.%'?)Q )i@%

~7Z
ivizg

which 1s kept convergent as K23 + = by the fact that

2
k by = 2}&2_3 v E W%E‘%{%m * (E29)
@%2’ 2}‘}‘@,

2
is fined to be positive imaginary when F <‘%

<y /20

1.

E.3.1 Singularity in (E28)

Actually Fz is a singular function of the angles in ngg’ as

is shown below. Suppose for the moment, however, that FZ is a well-
behaved function. Then at large é the {comparatively) slow angular
dependence of Fle in (£28) can be ignored, in accordance with the

remarks made at the end of section A.4. Thus the integral (£28)

behaves 1like

P %zﬁzs JE@ZJR +1Ka%,

o&g(K@ € 70K, ) g dK K

23 B 23 23 (E30)
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(40)

Alternatively, T can insert the expansion

lsd

l£(2,2+l)P {(Zg )&(K;?ﬂy (531)

into (E28), where the P are Legendre polynomials in the angle between

2
23 and 993 Then, performing the angular integration in (E28), and
replacing the spherical Bessel functions by their asymptotic forms
at large K23q23, again yields (E30). By either route, having
arrived at (E3C), the integral over K23 therein can be evalugted by
the method of stationary phase. The rapidly oscillating factor
ei¢£ in (E30) is essentially of the same form as the corresponding
factor treated in section D.1 [compare Eq. (D16)], and the analysis
in that section 1s applicable. There is no need to go through all
the details here, however, because obviously the integral on the
:/’)

right side of (£37) can decrease no less slowly than T

)
It follows that any § ~ dependence of (E28) can arise only

from the singular part of F (élZi,Ql) Since
A @ ra5k) = o0 >£m__k
12 \~i2)0 A2 s h2 (r32)

!
3500
fnz RZ

vhere a; can e presumed to be well-behaved, I conclude, just as

in the above transition from (E22) to (E30), that ,

Y
b3) ot v DUSSEA TPy RaiTia
d,f.z e m ?ﬁz (‘glz)ik?szl) - O\Tuze’ m*-“rmmi
. -
ANRY e
)(d“f ?2@’@ ‘*ﬁz)@ (1332)
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Tharefore the Tunetrfon T contalng o contrfhat fop whiich

(42)

o Doe ixu‘i

" S 28 . [
in the form

A

~ 121

3 % s> 6 (le %Qu’z,) e

where T, presumably is well-behaved. Correspondingly, the integral
wd

(F26b) has a contributlon which cannot be put in the form (E28), but

instead must be written as

1K, 9 1Ry5 M3 ‘
dk et~ e g Fe,)..05 Q)

~23
(T‘Z’S

X F%(%rzz.‘)gi)%(cqfh\zi) (F34a)

I remark that [as has been discussed in section 5.1] the non-

(42)

convergent integral (E33a) usually is interpreted so as to add to

(E34a) the principal part of a second integral, whose integrand
containsg the singular factor (Ql - klzi)_l. Ignoring this possible
principal part contribution to (E34a) does not affect the subsequent

analysis, however, as the comments at the very end of this section

B.3.1 mske clesar.
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In (F34a)--unlike (5292) =-here T, was assumed well-behaved--T
annot yet claim that the angular-dependent factors are comparativels

slotly varying at large r; the intecral over the &—~function must

- A L5 &) w
he performed fivst. To do so, introduce ’}1 a9 a new integration
Pad
variable, replacing Linge Then (E34a) becomes [with the aid of (E26c) ]

ALY K -

e mwz& ﬁ’zs dg % 3 «.kz F(
Tza

(5340)

23"23f ’MZ)

A F% (}E‘ \20 0 %n\)g(ankm)

-'1:’21—“ }S\zf_.% 3 L)%

L AN 1.k
W v ~2 IZL~ 23 2.3
=e A 2 /k dm‘ f Zae

120 ~
Tz?a

X F,(kzg zgp) )F(km)h (FQ.)

~
=
Lo
o
@]

N~
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Trom (LY po (0WeY 7T g wrviiion

A i A
%5 = Qi‘}f}‘ = 4’2 M (L35a)

Correspondingly, in (I34c)

[& M)

Var _ ()
k- (205 *[E -8 |k, fomk |
w Z}MR i, 2 R
A
(,gz —_—L %m o+ m, M K
My (i +m,) (-, ) (235¢)

A
The integral over dﬂl in (Z3%4c¢) now can be evaluated as follous.
. o

Choose E"Zi as the polar axis for %, (and other vectors), so that
£ o
PA

A
k 1s independent of the azimuth angle of . Then--now
P 15 O ,El

legitimately ignoring the slowly varying F1F3 factor--the behavior
of (£34c) at large }é is seen to be glven by

PR L] . . - .

S TRA LK K % A 1!@23?2361&,2&%2?

. A A
e WM, ~l2L ~13 dgi‘%{ﬁ@,&?@
q“l% (E36a)

A A
E’@%n‘@ eaj s B, sm %;@ E:m (@- 90%)}

eqf s ¢qf are the spherical coordinate angles of

The integral (E36a) reduces to [neglecting inessential factors]

vhere, of course,

& o3
poit
LD
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pon ik ik, 08B
1 &@ s’m@é . e s \T(k‘z 3"“% simY ) (1)

which at large 499 is a sum of two integrals proportional to

A Ak oy ik 90639 +1k C;,zas\}n%‘sx}ngw

{ d% s'tmg € 2525@ niﬂzs

e —— | i

7 . Ya
LPR (sim %' )

12

(E3%c)

If the factors F1F3 had been retained in (E£36a), the integral
N ] - 4 1 o~ 1 . ) “ Pl .
over ¢, in (E36a) would be performed using the method of stationary

phase. The points of stationary phase are at

Sm (é‘ o ?"rf) =0 (E37a)

Cos(%( - gpaﬁ) = + | (E37b)

Thus one would regain (E36c¢), except that the integrands would be
. o ~ N s

multiplied by F;Fq  evaluated at the values of by satisfying

37h).

T™he integrals (E36c¢) have the form
L)

1 ( éé (i }'/z Ry é‘ 32;2&%0&(9.?%) B
) o
F?Z%&h% J
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which again can be evaluated by the wmethod of statlonary phase.
first denonstrate-—as is important and not obvious--that k23 in

(E38) s real in the integration range 0 5_61 < w. TFrom (E35b),

'%;‘-‘-E_ﬁgé_ E- e <k ’ (’m‘ ) Zm‘k K w@) (£392)

%iz E?Ala o+, Vﬂ +m,

which, using Eqs. (22) and (35), can be rewritten as

2 A
_mom m, M*
L 0y Rt 2 M K L }R\ZLme:@,

(W\z+m3)1 LY My (m+m, ) menm, (E375)
The minimum value of (E39b), cosgl = -1, is
T 2
() = mmy [pms Yo o (m\*M g
ayimn (am ) \m,/ 2 \ 3/ mm, 2 (£39¢)

Consequently k,, in (£38) always is real, as asserted.

llence the points of stationary phase in (E38) are the roots of

dk k m( 8 (E40a)
| o - EA4f
ydkas _ kg am (B £ 0 0 a

é/%?!

or, using (E3%h), at




=0 @ow

-%ez% sin(B£6, ) - (myms)* PTG sin,
23 (m +W73)€m hm.{.mz Mz Kiu'("ZMk K %]

mylmem)”  mam, R

A
Vow consider the plus sign in (E40L) . At 61 = 0 the left side of

N
(n4nb) is negative; at 61 = m, however, the left side of (E40b) is

positive (since by definition 0 <6 . <m. Consequently, (E40b)

gf
» e 3 A
with the plus sign surely has a root in the range 0 5_61 < T.

Similarly (E40b) with the lower (minus) sign has a root in the

intepration range. I conclude that the integral in (E38) has

-1/2

contributions proportional to ¥ , and therefore that the expression

2 2 - .
(£38) is proportioral to T ~ =7 = at large T. Actually, the integral

(138) really should have included the angular dependent product
FlFB from (E34c), which would be evaluated at the various pairs of
stationary phase points satisfying (1N37b) and (E4Nb). But the roots
of (E37:) and (E40L) depend only on the direction (specified by the
angles QQE’ ¢ ) along which 494 -+ »  whereas Fl is a function of

perape

the directionn along which r,, > «©. Thus it does not seem
~23f w23

)

sossible that the aforementioned various palrs of stationary phase
2
noints can yield a set of p contributions to (E34a)--i.e., to
(F26a) and (E23) ~~vhich cancel for r = (fnnsdns) approaching infinity
. ~2J ~23

along arbitrary V..

T conclude this subsection with the remark [recall subsection

3]
ot

.11 that in cffect the role of the & function in (E34a) is to

Iy

reduce the nurher of stationary phase integratlons over qg71 from
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[the corventionally expectod wunhor, corvespondine to the
thirec dirmensions represented 1o o I to two. Thus, wherenn the

interrations in (E28) bring down an extra factor of order d ',

the inteprations in (E25a) bring down a factor only of order

E,3.2 Neglected Terms in Eq. (E24)

The preceding subsection completes the demonstration that the

50y = kg

2 . . .
[ to (E23). To achieve the primary objective of this sectionm,

Y nart of F,, Egq. (BE27b), makes a contribution of order
i 2’ q

there remains only to show that these apparently not self-cancelling

be cancelled by the heretofore

)
D contributions also cannot
neglocted last two terms on the right side of (E24). Consider, c.g.,

the term

]

o5 4 i ) [ B
CoV EE = |dF GlalE; T D) st

from (E24), where ﬁ(é) is defined by (E23). As in the case of (E23)

-9 .
itself, any P contribution to (E4la) must come from integration

over the domain r' > r. T nov can proceed as in section B.2. 1In

(F4la), because of the V%l<£31'> factor, I need be concerned only

- - —~ +)
with ¥' =+ o along directions v' = v,.'. Alone such directions, G )
< P 3 1 w b2 2 ’%

cannot propacate in bound states. Thus the r' > r contribution to

(E4la) is estimated by
=

ot PVE = en f
J{‘CKQ dﬁf fé? <ﬁ}\vi éia.@g) i (T415)
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where, in accordance with the resuvlts of the preceding subsection,

g -
T have replaced D{x* )by ¢’

e

, lgnoring the additional oscillatory
factors in 5(:}w Thig replacement certalinly pgives the leading

tevm in (EAla); if the possible cancellation under present discussion
were to occur, it only would make ﬁQ%) decrease more rapidly than

=2 .

¥ 7. Now, comparing Eqs. (E16) - (E19) with (E41h), it is clear
g -3 _

that (E41b) will deocrease no nmore slowly than @ 7, even assuming

that--as was the case for D(g} itealf-~the crude analysis along the

lines of section E.?, which leads to the conclusion (E41b) is of

7/
order § 712

, has overloocked the presence of a point of stationary
phase.

Tt has been demonstrated, therefore, that there are contributions to

6]

(4 D N gD

» siven by (69) vhich behave like ¥ © = p 7 at large r,

5

E.4 Derivation of Egs. (175)

I start from Eq. (170c), to which Eq. (170a) has been reduced.

Recalling Eqs. (130) and (13le) - (131i), we see that in (170¢)
* ‘ -Léﬂf“”za
) . - o
j’(jﬂ w -’(V‘;S)sz&)vz.?e

= < %m Ifﬂfi -B 7 (E42)

A

where we have employed the notation of Egs. (17la) and (172¢). Moreover,
from Eq. (131lg)

/éQvﬁ §€i+)(rfL y f%/LL )
KLW%(’G Hj)/ﬁ.

i Lkl be o b
- -4 %ﬁlﬁ ézuwwrwﬂ“ QU%ML %QE Cil W,Lb‘>
A r ™ )
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Thus Eq. (170a) can be rewritten in the form

el e b = (+)
>
v VL]

13
§ ~ (’() _"(;v{"l*wfi ‘:“}glll{;‘m . ‘
- -1 %:'fﬁ(;-gﬂyftuy)"é/ fw(ﬁ e <£’n@”jz./ t,“fjgm>
S h" w o~ p - J ~
[
, - 'Lru,’ﬁ " ’
+< jﬁz}}] fzs&"_§>jd‘/we i ‘F:_H(f,,)%:m)

7 ;&w; '.71/ J
+ L {f% e »/’Z’,L;‘»‘);J thb}{%naL>
1T h Y:v -

(E4d)

The second integral in (E44) is convergent [except at A2 = klZiZ’ as
explained in the text in connection with the integral of the quantity
inside the braces of Eq. (172a) ], provided the quantity within the
braces of (E44) is treated as a single §12-dependent function. The non-

convergent part of the first integral in (E44) is subtracted away via

the following manipulations. We know

(E45)

where PSL’ the Legendre polynomial of order &, depends only on the cosine

of the angle between v and v,, with A = Av,.  Using well known
%12 W\A WA »MA_

properties of Pz, as well as the asymptotic (large riz) dependence(34)

of the sphevical Bessel functions
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A,
it can be seen(gs) that
A - "“’ {I\LﬁA
Jiw €T
\/1‘1, —0 //‘Z//L
. /LA{,,, e VAT,
_ 2T Sy, - - AT (Y, e
A w w r A ‘/:» (E46D)
e
Thus
"’rn'v/}. Lkt ’
{095), 6 v € <}hn,u})3-lflz.f.['/é:;)_;,7
— L’EILL e ’ g _,L(;‘L A
’g(}[w <%¢Llf))ibl§llvl f»Lu>Z€ -
il
AT . LAI”L
-Jub(ﬂ ,L-VA)(j AT S(I{LH/AJC %
T A - T AT,
‘/é 2 ,LAF '(\KAL—’
v e th i i - v [ )) (f
+j2 o € < /},'L ))'L’T’iwik’n‘o>£2“"0i N M/})E‘ﬂ -'N“‘&(Wif”/\)wwj
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Provided the quantity within the braces is treated like a single
Elz—dependent function, the first integral in (E47) [like the second
integral in (E44)) converges except at A2 = k1212° Combining Eqs.
(E42), (E44) and (E47)--after performing the trivial angular integrations
over V., in the 6(312 * EA) terms of (E47)--then immediately yields
Eq. (172a).

To see how the divergent one-dimensional integrals in (172a) should
be interpreted, one argues as follows.

w ' _ SR

JLM CLAX T Mo jli\xebb = Lo e%kd’

R4 o K= & Lk

e e e T

b ‘

, {wk}?, wﬁ"\k’*’g

Now consider the behavior--as a function of k--of the quantity inside the
o'.’
braces of (E48) when R becomes very large. Evidently the term ;%,¢uwdkk
becomes very rapidly oscillating, with average value zero, except in the
vicinity of k = 0, Therefore, since
[ :
ok

-ob

it is reasonable to write

o 2 RR = S (k) (E49a)

R

(43), Similarly, the quantity (cos kR - 1) in (E48) is

as is well known
very rapidly oscillating, with average value - 1, except for values of k

in the range |k| <~ le, where for every R the average value of (cos kR - 1)
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tends to zero as k - 0. Consequently it also is reasonable to write

b0
g w2 2R =1

/&w ——— = *'{: ’ﬂc’ >0
K- & R
, (E49b)
con AR -1 - ,é =0
Rsw vk

Eqs. (49) are equivalent to Eqs. (173), recognizing that §(k) = 0 for
k # 0., Of course, because of the infinitely rapid oscillations as R + «,
the limits on the left sides of (E49a) and (E49b) do not really exist in
a mathematically strict sense. However, under circumstances when these
oscillations average out [as, e.g., when integrating over k] or for other
reasons can be disregarded, the right sides of (E49a) - (E49b) are the
only plausible values one can assign to the corresponding quantities on
the left sides.

When Eqs. (173) are combined with Eqs. (E42), (E44) and (172a), ome
2]

2
obtains [for A" # klZi

(E50)

where the quantities on the right side of (E50) are giQen by the right
sides of (175b) and (176b). But since the right side of (176b) is a sum
of 6-functions, i.e., has no finite part, the discussion connected with
Eq. (169a) indicates the right side of (176b) indeed must be wholly a
contribution to that part of Ts(gi %.&f) which has been termed Ta(gi > §f)‘
Having come to this conclusion, the long-sought formulas (175) for

TtQBi - gf) follow immediately.
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APPENDIX F. THE NINE-DIMENSIONAL CONFIGURATION SPACE

A number of the remarks in the text concerning the anine-

T T as well as its siw-

At mensd a inace ana b
imensional space gspanned by 1o Ips Lqs

12
dimensional subspace "orthogonal to R" deserve some clarification.
In particular, the relationship betweenﬁ defined by (25d) andé
civen by Eq. (102d) is not wholly apparent from anything said in the
text thus far. |

Points in the nine-dimensional configuration space of particles
1, 2, 3 are specified by the three-dimensional vectors Lys Loy Eqe
That is to say, the ninewdiménsional space can be thought to contain
nine mutually orthogonal unit vectors ~il’ 21, &1’ ,J"_'z, ;]:2, }52, 2‘.3’
23, 123, in terms of which the nine-dimensional vector I can be

written as

T=x1,0Y | @ <. 1 VG L LBy k_(r1)
T =X, 3“1‘2‘;&'@ 40 319’1@255}_@ FIRNALLAN
vihere the@ specifies vector addition in the nine-dlmensional

space, to be distinguished from the ordinary plus sign signifying
addition of three-dimensional vectors, as, e.g., in Lgs. (28) -(29).
Tt is convenient ‘tc denote the coordinates inm this nine-dimensional
space by 5., 8 = 1,...,9, in the order rcspectively X1y Koy Ko,

Yis Yo YgsZys Zps Zae Similarly, the aine-dimensional unit vectors
will be denoted by,xa, a=1,...,2, in the oxrder 31’ 32, 5.03, ete.

Then (Fl) can be rewritten as

PN
o]
B3
St

4
B
™1
<
o)
b
fl
1S
o
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Tere T onow use matrix notation, withi 5 oa column matrin composaed of
14
. . -G - \qf\ -y ot
Syseeeain,y, aud vo-the transpose ol Lie coluin v--now composed
e o~ L d s

AT s e e e -
Lo owie vecetors :&l,...vo.

In tlic albove configuration space, the six-dimensional subspace

independont of T dis found by writing (F2) in terms of, e.g., 7, Tan,
lad [ad a8
anas  fore precisely, define the primcd quantities s,',...,5." by
A L v
R XY Z s, s,,57)
R = (X,Y,2) =(58.5%.5%
4 ‘ ’
= & 12 B )E (52185)83)
% 2
iz P (F2)

iuz = %x'%\l”cl'i = (513'8‘:’50

Then s' and s are related by a nine-dimensional linear transformation

|
ol s .
w )

where, from Zgs. (17), (28a) and (22L), the 2 x 2 matrix
/VYh /YW-;_ Wa \

- m; "'mz R

g’ Wsg

{
i

Substituting in (T2)




381

whon Troso Lerlag the transpose of @ rog s oo coluna)
o -1 oA
w2 U .
/Lr, - {;QJr‘ (o)
Whe w“a

Putting D = (ST,, s[', 57') = 0 in (F5a) gives tho six-dimensional
N 1 4
yspace of vectors depending only on r . utting r 0
© uepeneing onsy on f120 di12 & 2127 412

in (P5a) vields the three-dimensional subspace of vectors depending

only on ". llcvever, because U from Lgs. (r4) is not an

orthogonal transformation, the subspace independent of R is not

orthiogonal in the usual sense to the subspace depending only on_z.

To e cnact, the scalar product Letween a vector depending only oun
aund a vector independent of D need not be zero.

Tor this reason, it is useful to introduce a nev nine-dimensional

in this second nine-

EJ

space spanncd by Y s Q4 Points
Y le ~_|.,

Jimensional space can be writteun as

[ .y ) i ¢y, L] [
Ef = }Q&lGE\EE‘GB;Z?S,GB;Iﬂiﬁz_&,ELIiI_ tZ‘VZGBC; 1'69%3 ‘S3

N
]
A

N~

vhere ;1', jl', etc., are a sct of nine mutually ortuogonal unit
A
vectors in the sccoud space, wihose ordering in ter of‘x" is

obvious. The difference between (I'6) and (F5a) lies solely in

1. ~
the £

act that‘z from (T5h) are not an orthonermal sct, whercas

v' in (IF()have bLeen chosen orthonormaleAs a result, the primed

o~ 3 ~ e e 31 RPN o ] ¥
spacc 1s essentially different Or i.e., in
e O U S e amn . - . < e TR |
general points v’ oand v corresponding to the sawme orviginal three-
Va4 lad
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~ ~

dimensional locations of particles 1, 2, 3 cannot be identical
{having the saume magnitude and direction) nine-dimensional vectors.
Tor anv choice of‘x' in (¥6), however, there 15 a one-to-one

correspondence botween points in the unprired and primed spaces.

In the prined spacc, morcover, the subgpaces indepe: of T and
t} 3 ¥ 9 X i [y
depending only on 2 obviously are orthogonal.
¥
o the other hand, the primed and unprimed spaces can Le made
tdentical by simple transformations. BSpecifically, to every point
in the nine-dimensional r-space there corresponds a nine-dimensional

i

point

!
i}

pep op -vks

{ w2 e B (F7a)

£

where

,%l ‘f (T76)

_ﬂ_h
3]

(F7¢)

Tyt T arm kT tlv e ey e o e oy E T - x
Tvidently the components of p in (T7a) are i
s
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A\

1 o o P I s ey B B FON S e A e T e
by (253) irilarly, te every peint in the nine dirmensional x
P

M - - - el

space bnere corrasponds

hiere
2 ¢
G = Z ” o% (PSh)
1 : g
% ] ‘/\A 2 e
Then p and p' can Le made identical nine-dinmensional wvectors by
o ~

appropriate choice of thie orthonormal set X'.

last assertion I note that, directly from thedir

defining equations, one can verify that

g . 2 £ 2 e
m T w2 M Y
) M T, T K %7‘;2 n.*/“squl (702
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in our nine-dimensional matrix notation i

L ro g o,
?§ g: S = S G; S

Hence

i

Fs uWes

where U' 1is an orthogonal transformation. Using (Fé4a)

3

GT'U'F

S—
1

GWF™

vhich yields

g;
\‘ ~ ]
=4
§7

{

zlF

« 7y [ms
v M M
| | M 9] |
\ Tt Ripr -a»%fw- 5

—
wmm, j 3 \/Wm/i
M

i\ v M{(mtm) VM)

W

(¢
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(FOL)

(F1na)

(rint)

(F10¢)

(T1la)

(r1lh)
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Cne cacily verifies that (P11L) indeed is orthosonal.  Thus (T7a)

and (7)Y will Le identical if

~ ~ v ~y, 2=
gFS -.-_fy:Gs 5'6Ws = erG "WEs = M’u Fs

~
3
iy
>
o

<o

~ ~ |

/}{ = Y U (F12b)
{ !

/&{ = “ /‘y,— (r12e)

The above proves that p' indeced can be made identical with p.
~ —

Once this result, which does require proof, is in hand, it follows

that p defined by (25d) can be written in the form
4

i
f = |2 (\1 2 g & ;E (F13)

where p is given by (IN2¢), and therefore really has the desired
w

properties of being independent of---as well as orthogonal to--R.
Pa"d

o

The second equality in (102d) then follows by symmetry, recognizing
that the orientations of the basis vectors in the 1, 2 and 2, 3

repregsentations of course must be conslstent with the foregoing.
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